Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2025 | Story Jacky Tshokwe | Photo Supplied
Samantha Durrant
Samantha Durrant, the first violinist and Artistic Leader of the Odeion String Quartet, appointed since May 2024.

In the world of music, certain instruments resonate not just with sound, but with profound emotion and history. For Samantha Durrant, her journey with the violin began at the tender age of seven, inspired by the heartfelt story of Music of the Heart. This film, coupled with her exposure to the harmonious symphonies of the KwaZulu-Natal Philharmonic Orchestra, planted seeds that grew into a lifelong devotion to the violin and classical music.

Now, as part of the Odeion String Quartet – the only quartet in residence at a South African university – Durrant stands at the forefront of a mission that transcends performance. She sees her role not only as a performer, but as a steward of South Africa’s string-playing legacy. Her vision is bold yet grounded: to make the Odeion String Quartet the centrepiece of string training and performance in the country.

Reflecting on her journey, Durrant emphasises the critical role of mentorship, exposure, and perseverance. "There wasn’t one pivotal moment in my career," she shares. "It was the culmination of experiences with colleagues, mentors, and friends, all encouraging me to push my boundaries."

The Odeion String Quartet is bridging South African talent with global excellence, performing works by masters such as Haydn and Beethoven while celebrating contemporary compositions, including those from South Africa's rich tapestry of composers. For Durrant, the opportunity to collaborate with living composers is an unparalleled gift, offering insights into their inspirations and musical intentions.

Education and community are at the heart of the quartet's mission. Through school concerts, youth orchestra engagements, and performances at prestigious events such as the Vice-Chancellor’s Concert and the Rector’s Farewell, the quartet inspires audiences of all ages. "Youth orchestras represent unity," Durrant notes. "They bring people together, showcasing our shared humanity."

To those stepping into the challenging world of music, Durrant offers sage advice: "Be patient with yourself. Understand that this field is not easy, but the journey of self-discovery it offers is unparalleled."

With a packed performance calendar and ambitious goals for the quartet’s future, Durrant remains hopeful about music's place in society. "Music has the power to heal, inspire, and unite," she says. "In these challenging times, it is balm for the soul – an essential part of our humanity."

As the Odeion String Quartet continues its journey, its melodies remind us of the transformative power of music, resonating with hope and possibility across generations.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept