Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 January 2025 | Story Lunga Luthuli | Photo Supplied
Intsika Food Garden
The newly redeveloped Intsika Garden on the UFS Qwaqwa Campus, designed to promote accessibility, sustainability, and community engagement. The garden's flexible spaces offer opportunities for students to relax, collaborate, and connect with one another.

The UFS Qwaqwa Campus is transforming its landscape to provide more than just a physical connection between buildings. The redevelopment of the garden in front of the Intsika Building marks a shift towards integrating communal spaces that support interaction, inclusivity, and sustainability. 

According to Nico Janse van Rensburg, Senior Director: Facilities Planning at University Estates, the primary aim of the redevelopment is to celebrate the diversity of the university as its ‘greatest asset’ by creating spaces that promote community engagement. “Previously, the garden was underutilised and did not connect properly to the rest of the campus’ circulation network. We identified an opportunity to develop it into a social space where academia and visitors can connect,” Van Rensburg explained.  

Accessibility and sustainability  

The Intsika Garden redevelopment aligns with the broader strategic goals of the institution, particularly in infrastructure planning. The project focuses on making the space universally accessible, ensuring that it caters for people with disabilities while improving overall circulation on the campus. “The development strives to improve the accessibility to different functions on the campus by making the space and circulation routes universally accessible,” said Van Rensburg.  

This initiative is also embedded in the university’s commitment to sustainability, as waterwise plants, artificial grass, and low maintenance finishes have been carefully selected to reduce the environmental footprint. “Artificial grass was used in combination with natural vegetation, which requires minimal water and maintenance,” he added.  

In addition to accessibility, sustainability plays a central role in the redevelopment. The project is designed to contribute to the university’s goal of reducing its carbon footprint by promoting pedestrian-friendly spaces and minimising the reliance on fossil-fuel-driven vehicles.  

Van Rensburg highlighted the efficiency gains in the management of green spaces, noting that the design will reduce the frequency of maintenance, which in turn reduces carbon emissions and energy consumption. “By promoting pedestrian circulation and integration with public transport, the use of vehicles using fossil fuels is minimised,” he said. Walking, he added, is not only a more environmentally friendly option, but also promotes the health and well-being of the campus community.  

Social spaces for collaboration  

The redevelopment introduces six new social nodes across the campus, each offering unique opportunities for student engagement and collaboration. “Smaller pockets have been created, which form part of the larger public space, resulting in a microclimate where people can relax and socialise,” Van Rensburg explained.  

The spaces are designed with flexibility in mind, featuring various seating arrangements, including spaces for meetings and group collaborations. Among the new additions is an amphitheatre, which provides a multifunctional space for lectures, performances, and other activities. “Flexible communal spaces were created for recreational opportunities, resulting in a balanced campus lifestyle,” Van Rensburg added.  

Recognising the increasing reliance on technology, the redevelopment also incorporates features such as charging stations and Wi-Fi connectivity. The spaces are envisioned as ‘information zones’, providing students and staff with convenient access to online resources while they relax or connect outdoors. “With Wi-Fi connectivity, the spaces function as an extension to traditional libraries,” noted Van Rensburg.   

While the Intsika Garden redevelopment is a significant step forward, plans are already underway for further infrastructure and green initiatives. “The soft landscaping and signage contracts were awarded for the Intsika Garden,” Van Rensburg confirmed. He also revealed that much-needed renovations to the front of the Intsika Building are in the pipeline, with a contractor soon to be appointed for the construction work. The planned upgrade will align with the garden’s aesthetics by drawing inspiration from indigenous art and culture, creating a cohesive identity for the campus. 

As these developments progress into 2025, the Qwaqwa Campus will continue to evolve, offering students and staff spaces that not only enhance their academic experience, but also contribute to a more sustainable and connected environment. 

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept