Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 January 2025 | Story Gerda-Marie van Rooyen | Photo Supplied
KovsieX
KovsieX offers a comprehensive digital experience through podcasts, video content, and social media. This initiative is set to transform the student experience, creating a strong sense of belonging and collaboration across campuses.

Optimising student experience while providing students with multimedia training using state-of-the-art equipment and aligning with Vision 130, KovsieX is set to become a great asset to the university, its students, and the community. 

This initiative, approved by the UFS Rectorate on 29 November 2023, combines various student media brands on the Bloemfontein and Qwaqwa campuses (KovsieFM, Q-Lit, KovsieTV, KovsieCAST) into a unified brand consisting of three student-driven sub-departments. This includes audio (radio and podcasts), video (long and short form), and social media (including TikTok, Instagram, WhatsApp, and YouTube). 

An all-digital approach 

Gerben van Niekerk, Head of Student Experience (KovsieX), explains: “This all-digital approach leverages digital radio, podcasts, and social media platforms to create a sense of belonging among students by reflecting on and leading student life across the campuses.” KovsieX has achieved remarkable success, reaching an audience of more than 1,2 million in the first semester alone, with multiple TikTok videos surpassing 100 000 views. 

“Recognising the evolving radio landscape, our approach integrates a comprehensive digital strategy to adapt to changing media consumption preferences and provide students with hands-on experience on emerging platforms, strengthening their market relevance. KovsieX (previously KovsieFM) moves away from traditional FM broadcasting and has enabled the students to cover a wider range of topics that affect the Kovsie community,” says Van Niekerk. He adds, “The essence of KovsieX can be summarised in our one-word slogan: IMAGINE.”  

KovsieX supports Vision 130, as it leverages emerging technologies to enrich academic and non-academic student experiences. Furthermore, it also provides students with the opportunity to gain on-the-job and leadership experience in the KovsieX executive committee (KovsieXco), comprising a small group of ‘dynamic and highly talented students’, with their first objective: to decide on a brand name and setting on KovsieX – with the ‘X’ referring to experience. 

A mobile app provides students with easier access to KovsieX’s content. This initiative is set to increase students’ experience even more, as possible partnerships are in the pipeline to deliver a year-long dialogue series on themes pertinent to students. “This initiative will engage students on key issues such as leadership, mental health, heritage, and anti-discrimination through a blend of digital content – including interviews, social media posts, and expert discussions – and live on-campus events.”  

State-of-the-art facilities 

The construction of the KovsieX Pod on the Bloemfontein Campus allows students to produce content in a state-of-the-art podcast and video studio with Apple Mac workstations and a meeting room. A similar space in the current Student Media Building on the Qwaqwa Campus, named the KovsieX Q-Pod, is on the cards, as is the integration of KovsieX across the Bloemfontein and Qwaqwa campuses. “KovsieX will be broadcast from two locations and will, therefore, allow students from both campuses to interact with one another live on air. Both radio studios will be rebuilt to allow students to stream directly on YouTube, Instagram, and TikTok from both campuses simultaneously. This is made possible by cutting edge cloud-based software – popular in Europe – but KovsieX will be the first to leverage this technology in the country,” shares Van Niekerk.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept