Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 January 2025 | Story Gerda-Marie van Rooyen | Photo Supplied
KovsieX
KovsieX offers a comprehensive digital experience through podcasts, video content, and social media. This initiative is set to transform the student experience, creating a strong sense of belonging and collaboration across campuses.

Optimising student experience while providing students with multimedia training using state-of-the-art equipment and aligning with Vision 130, KovsieX is set to become a great asset to the university, its students, and the community. 

This initiative, approved by the UFS Rectorate on 29 November 2023, combines various student media brands on the Bloemfontein and Qwaqwa campuses (KovsieFM, Q-Lit, KovsieTV, KovsieCAST) into a unified brand consisting of three student-driven sub-departments. This includes audio (radio and podcasts), video (long and short form), and social media (including TikTok, Instagram, WhatsApp, and YouTube). 

An all-digital approach 

Gerben van Niekerk, Head of Student Experience (KovsieX), explains: “This all-digital approach leverages digital radio, podcasts, and social media platforms to create a sense of belonging among students by reflecting on and leading student life across the campuses.” KovsieX has achieved remarkable success, reaching an audience of more than 1,2 million in the first semester alone, with multiple TikTok videos surpassing 100 000 views. 

“Recognising the evolving radio landscape, our approach integrates a comprehensive digital strategy to adapt to changing media consumption preferences and provide students with hands-on experience on emerging platforms, strengthening their market relevance. KovsieX (previously KovsieFM) moves away from traditional FM broadcasting and has enabled the students to cover a wider range of topics that affect the Kovsie community,” says Van Niekerk. He adds, “The essence of KovsieX can be summarised in our one-word slogan: IMAGINE.”  

KovsieX supports Vision 130, as it leverages emerging technologies to enrich academic and non-academic student experiences. Furthermore, it also provides students with the opportunity to gain on-the-job and leadership experience in the KovsieX executive committee (KovsieXco), comprising a small group of ‘dynamic and highly talented students’, with their first objective: to decide on a brand name and setting on KovsieX – with the ‘X’ referring to experience. 

A mobile app provides students with easier access to KovsieX’s content. This initiative is set to increase students’ experience even more, as possible partnerships are in the pipeline to deliver a year-long dialogue series on themes pertinent to students. “This initiative will engage students on key issues such as leadership, mental health, heritage, and anti-discrimination through a blend of digital content – including interviews, social media posts, and expert discussions – and live on-campus events.”  

State-of-the-art facilities 

The construction of the KovsieX Pod on the Bloemfontein Campus allows students to produce content in a state-of-the-art podcast and video studio with Apple Mac workstations and a meeting room. A similar space in the current Student Media Building on the Qwaqwa Campus, named the KovsieX Q-Pod, is on the cards, as is the integration of KovsieX across the Bloemfontein and Qwaqwa campuses. “KovsieX will be broadcast from two locations and will, therefore, allow students from both campuses to interact with one another live on air. Both radio studios will be rebuilt to allow students to stream directly on YouTube, Instagram, and TikTok from both campuses simultaneously. This is made possible by cutting edge cloud-based software – popular in Europe – but KovsieX will be the first to leverage this technology in the country,” shares Van Niekerk.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept