Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2025 | Story Dr Cindé Greyling | Photo Supplied
Green Futures Hub
Prof Wayne Truter, who is leading the Green Futures Hub at the UFS, highlights that mining and agriculture are important yet competing industries in South Africa. The hub aims to find sustainable ways for them to coexist.

Our earth is very resilient, and a green future is possible, but we must make changes. At the forefront of this mission is the Green Futures Hub, spearheaded by Prof Wayne Truter at the UFS. Prof Truter holds a PhD in Integrated Agricultural and Environmental Sciences, with more than 25 years of experience. He is a leader in the field of forage, pasture, and land regeneration – particularly those impacted by mining. 

The Green Futures Hub is a virtual platform that bridges academic research and industry gaps, aiming to solve real-world challenges with scientific insights. It is designed to showcase and integrate the research happening across various disciplines at the University of the Free State (UFS), making it accessible to industry and communities alike. “People often lose faith in academic institutions, thinking that the research done there has no practical value,” Prof Truter notes. “The Green Futures Hub aims to change that by making scientific findings accessible and relevant to daily life.” 

This platform offers a unique opportunity for industries to connect with researchers working on solutions related to climate change, sustainable agriculture, or environmental rehabilitation. “Our hub is a space where industries can come to us with their challenges, and we can offer solutions based on research,” Prof Truter explains. “It’s about creating real impact.” 

Collaboration and integration are central to the Green Futures Hub’s approach. “Through interdisciplinary collaboration and a commitment to environmental stewardship, we want to develop solutions to the complex development challenges related to ecosystems, agroecosystems, water resources, biodiversity, infrastructure, and communities,” says Prof Truter. 

One of the hub’s projects that is close to Prof Truter’s heart, is the future coexistence of mining and agriculture. Mining and agriculture are two important industries in South Africa, often competing for land. However, the hub seeks to bridge this gap by exploring how these industries can coexist sustainably.  

“The future coexistence of mining and agriculture is critical,” says Prof Truter. “While mining often uses the land intensively, they have the responsibility and capability to rehabilitate it for agricultural use, ensuring that it is as productive – if not more – than it was before. Farmers and miners have much to gain from each other,” he explains. “By partnering with industries, we can help rehabilitate the land that has been mined, and in turn, farmers can harness and bring back the productivity to that land with the financial inputs of mining companies.” 

Prof Truter also emphasises the importance of science communication. “We need to do better at communicating the value of the research we’re doing. Many times, industries don’t understand the significance of what we’re working on because it’s not explained in a way that resonates with them. The hub ensures that research findings are accessible, understandable, and applicable to real-world issues.”  

The Green Futures Hub is more than just a research platform; it is a testament to the power of collaboration between academia and industry. “We’re not just conducting research,” Prof Truter concludes, “we’re developing solutions.” 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept