Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2025 | Story Dr Cindé Greyling | Photo Supplied
Green Futures Hub
Prof Wayne Truter, who is leading the Green Futures Hub at the UFS, highlights that mining and agriculture are important yet competing industries in South Africa. The hub aims to find sustainable ways for them to coexist.

Our earth is very resilient, and a green future is possible, but we must make changes. At the forefront of this mission is the Green Futures Hub, spearheaded by Prof Wayne Truter at the UFS. Prof Truter holds a PhD in Integrated Agricultural and Environmental Sciences, with more than 25 years of experience. He is a leader in the field of forage, pasture, and land regeneration – particularly those impacted by mining. 

The Green Futures Hub is a virtual platform that bridges academic research and industry gaps, aiming to solve real-world challenges with scientific insights. It is designed to showcase and integrate the research happening across various disciplines at the University of the Free State (UFS), making it accessible to industry and communities alike. “People often lose faith in academic institutions, thinking that the research done there has no practical value,” Prof Truter notes. “The Green Futures Hub aims to change that by making scientific findings accessible and relevant to daily life.” 

This platform offers a unique opportunity for industries to connect with researchers working on solutions related to climate change, sustainable agriculture, or environmental rehabilitation. “Our hub is a space where industries can come to us with their challenges, and we can offer solutions based on research,” Prof Truter explains. “It’s about creating real impact.” 

Collaboration and integration are central to the Green Futures Hub’s approach. “Through interdisciplinary collaboration and a commitment to environmental stewardship, we want to develop solutions to the complex development challenges related to ecosystems, agroecosystems, water resources, biodiversity, infrastructure, and communities,” says Prof Truter. 

One of the hub’s projects that is close to Prof Truter’s heart, is the future coexistence of mining and agriculture. Mining and agriculture are two important industries in South Africa, often competing for land. However, the hub seeks to bridge this gap by exploring how these industries can coexist sustainably.  

“The future coexistence of mining and agriculture is critical,” says Prof Truter. “While mining often uses the land intensively, they have the responsibility and capability to rehabilitate it for agricultural use, ensuring that it is as productive – if not more – than it was before. Farmers and miners have much to gain from each other,” he explains. “By partnering with industries, we can help rehabilitate the land that has been mined, and in turn, farmers can harness and bring back the productivity to that land with the financial inputs of mining companies.” 

Prof Truter also emphasises the importance of science communication. “We need to do better at communicating the value of the research we’re doing. Many times, industries don’t understand the significance of what we’re working on because it’s not explained in a way that resonates with them. The hub ensures that research findings are accessible, understandable, and applicable to real-world issues.”  

The Green Futures Hub is more than just a research platform; it is a testament to the power of collaboration between academia and industry. “We’re not just conducting research,” Prof Truter concludes, “we’re developing solutions.” 

News Archive

Africa the birthplace of mathematics, says Prof Atangana
2017-11-17


 Description: Prof Abdon Atangana, African Award of Applied Mathematics  Tags: Prof Abdon Atangana, African Award of Applied Mathematics

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied

 

Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.

When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.

Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana. 

Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.

Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.

Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation. 

Fractal geometry

“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems. 

“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said. 

“Can Africa rise again?” Prof Atangana believes it can.

He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept