Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2025 | Story Dr Cindé Greyling | Photo Supplied
Green Futures Hub
Prof Wayne Truter, who is leading the Green Futures Hub at the UFS, highlights that mining and agriculture are important yet competing industries in South Africa. The hub aims to find sustainable ways for them to coexist.

Our earth is very resilient, and a green future is possible, but we must make changes. At the forefront of this mission is the Green Futures Hub, spearheaded by Prof Wayne Truter at the UFS. Prof Truter holds a PhD in Integrated Agricultural and Environmental Sciences, with more than 25 years of experience. He is a leader in the field of forage, pasture, and land regeneration – particularly those impacted by mining. 

The Green Futures Hub is a virtual platform that bridges academic research and industry gaps, aiming to solve real-world challenges with scientific insights. It is designed to showcase and integrate the research happening across various disciplines at the University of the Free State (UFS), making it accessible to industry and communities alike. “People often lose faith in academic institutions, thinking that the research done there has no practical value,” Prof Truter notes. “The Green Futures Hub aims to change that by making scientific findings accessible and relevant to daily life.” 

This platform offers a unique opportunity for industries to connect with researchers working on solutions related to climate change, sustainable agriculture, or environmental rehabilitation. “Our hub is a space where industries can come to us with their challenges, and we can offer solutions based on research,” Prof Truter explains. “It’s about creating real impact.” 

Collaboration and integration are central to the Green Futures Hub’s approach. “Through interdisciplinary collaboration and a commitment to environmental stewardship, we want to develop solutions to the complex development challenges related to ecosystems, agroecosystems, water resources, biodiversity, infrastructure, and communities,” says Prof Truter. 

One of the hub’s projects that is close to Prof Truter’s heart, is the future coexistence of mining and agriculture. Mining and agriculture are two important industries in South Africa, often competing for land. However, the hub seeks to bridge this gap by exploring how these industries can coexist sustainably.  

“The future coexistence of mining and agriculture is critical,” says Prof Truter. “While mining often uses the land intensively, they have the responsibility and capability to rehabilitate it for agricultural use, ensuring that it is as productive – if not more – than it was before. Farmers and miners have much to gain from each other,” he explains. “By partnering with industries, we can help rehabilitate the land that has been mined, and in turn, farmers can harness and bring back the productivity to that land with the financial inputs of mining companies.” 

Prof Truter also emphasises the importance of science communication. “We need to do better at communicating the value of the research we’re doing. Many times, industries don’t understand the significance of what we’re working on because it’s not explained in a way that resonates with them. The hub ensures that research findings are accessible, understandable, and applicable to real-world issues.”  

The Green Futures Hub is more than just a research platform; it is a testament to the power of collaboration between academia and industry. “We’re not just conducting research,” Prof Truter concludes, “we’re developing solutions.” 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept