Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2025 | Story Gerda-Marie van Rooyen | Photo Supplied
Prof Linus Franke
Leading the research in South Africa is Prof Linus Franke from the Department of Soil, Crop and Climate Sciences.

Scientists are actively pursuing the successful breeding of diploid hybrid potatoes from inbred lines. This is expected to revolutionise potato breeding as it holds the key to rapid genetic progress. It will introduce new varieties for commercialisation through seed. Currently, existing potato variants have a gene that renders self-pollinated seeds infertile.

Prof Linus Franke, an academic in the Department of Soil, Crop and Climate Sciences at the UFS, is leading the research in South Africa. “This technology allows the production of genetically uniform potato seed that is easy to transport and largely disease-free.” He says this differs from conventional breeding whereby only vegetative propagation is possible due to tetraploid varieties in potatoes. It also risks carrying pests and diseases from one generation to the next – leading to the accumulation of pests and diseases with each round of multiplication.

Seed innovation

Prof Franke explains that Solynta BV, a seed company based in the Netherlands that produces potato varieties that can be grown from seed, has included South Africa in their research efforts because it is one of Africa’s largest producers and exporters. Through his academic relationship with Wageningen University and Research, a Dutch institution renowned for its agricultural endeavours and food production, the UFS became involved in researching hybrid potatoes grown from seed.

Diploid seeds containing two sets of chromosomes allow easier gene manipulation to increase predictability and speedier genetic progress. The breeding approach enables the incorporation of tolerance to pests, diseases, abiotic stresses (cold, heat, drought) and other desired genetic traits.

Although Prof Franke is optimistic about this research, he is not blind to disadvantages. “Potato seeds are tiny and have little energy reserves, making it harder to grow potatoes from seed than from tubers.” He says potatoes from seed will take longer to cultivate than tubers, as farmers need to grow plantlets from seeds first, adding six weeks to the growing period. “It is possible that commercial farmers can grow potatoes directly from seed. Alternatively, perhaps more likely, specialised growers will produce tubers of potatoes from seed; these tubers are then sold as seed tubers to other potato farmers, who then continue their normal practices of producing potatoes for the market from tubers.”

Financial benefits

Prof Franke says farmers have reason to get excited. “Seed potatoes will reduce input costs, as varieties with enhanced tolerance to pests and diseases require less pesticides. Planting one hectare of potatoes requires three to four tonnes of potato tubers, but only one 25 g packet of potato seeds.” Since potatoes are a more valuable commodity than maize, this technology might also increase farmers’ income potential.

News Archive

UFS leads the way with GMO testing
2003-08-25

A formal agreement linking Africa’s first testing facility for genetically modified organisms (GMO) to an international organization was signed at the University of the Free State.

According to the manager of the GMO testing facility, Dr Chris Viljoen of the Department of Plant Sciences, the facility is now part of GeneScan, a world leader in food diagnostic testing, which has its headquarters in Germany with subsidiaries in the Unites States, Brazil and Hong Kong.

The facility at the UFS has been selected by the second largest international food company to do all its South African GMO testing for export products.

The GMO testing facility is the brainchild of Dr Viljoen, who is a specialist in the field of marker biotechnology and its applications in crop science.

He says the need for such a testing facility arose due to the international regulations on GMOs in food, especially Europe and Asia that requires South African exporters to certify whether their products contain any GMO.

“The regulations in Europe and Asia reflect a consumer need for choice in what they eat due to concerns over the safety of GMOs, as well as environmental and ethical issues. GMO testing and labelling allow consumers the right of choice to eat genetically modified foods or not. According to EU regulations, any product with a GMO content of 1% or higher is labelled as containing GMO.”

According to Dr Viljoen only four products in South Africa are currently GMO. They are white and yellow maize that have been made insect resistant, soya bean that is herbicide tolerant and insect resistant cotton. He says that the awareness of GMOs among South Africans is still very limited, especially in poorer communities, but it is likely to increase with the efforts being made in consumer education by government, seed companies and NGOs.

The testing facility has been established to accommodate the local as well as international market. The GMO testing at the UFS facility is performed using real time PCR, the most advanced means of GMO detection currently available, and using GeneScan developed technology that is recognized worldwide.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept