Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2025 | Story Gerda-Marie van Rooyen | Photo Supplied
Prof Linus Franke
Leading the research in South Africa is Prof Linus Franke from the Department of Soil, Crop and Climate Sciences.

Scientists are actively pursuing the successful breeding of diploid hybrid potatoes from inbred lines. This is expected to revolutionise potato breeding as it holds the key to rapid genetic progress. It will introduce new varieties for commercialisation through seed. Currently, existing potato variants have a gene that renders self-pollinated seeds infertile.

Prof Linus Franke, an academic in the Department of Soil, Crop and Climate Sciences at the UFS, is leading the research in South Africa. “This technology allows the production of genetically uniform potato seed that is easy to transport and largely disease-free.” He says this differs from conventional breeding whereby only vegetative propagation is possible due to tetraploid varieties in potatoes. It also risks carrying pests and diseases from one generation to the next – leading to the accumulation of pests and diseases with each round of multiplication.

Seed innovation

Prof Franke explains that Solynta BV, a seed company based in the Netherlands that produces potato varieties that can be grown from seed, has included South Africa in their research efforts because it is one of Africa’s largest producers and exporters. Through his academic relationship with Wageningen University and Research, a Dutch institution renowned for its agricultural endeavours and food production, the UFS became involved in researching hybrid potatoes grown from seed.

Diploid seeds containing two sets of chromosomes allow easier gene manipulation to increase predictability and speedier genetic progress. The breeding approach enables the incorporation of tolerance to pests, diseases, abiotic stresses (cold, heat, drought) and other desired genetic traits.

Although Prof Franke is optimistic about this research, he is not blind to disadvantages. “Potato seeds are tiny and have little energy reserves, making it harder to grow potatoes from seed than from tubers.” He says potatoes from seed will take longer to cultivate than tubers, as farmers need to grow plantlets from seeds first, adding six weeks to the growing period. “It is possible that commercial farmers can grow potatoes directly from seed. Alternatively, perhaps more likely, specialised growers will produce tubers of potatoes from seed; these tubers are then sold as seed tubers to other potato farmers, who then continue their normal practices of producing potatoes for the market from tubers.”

Financial benefits

Prof Franke says farmers have reason to get excited. “Seed potatoes will reduce input costs, as varieties with enhanced tolerance to pests and diseases require less pesticides. Planting one hectare of potatoes requires three to four tonnes of potato tubers, but only one 25 g packet of potato seeds.” Since potatoes are a more valuable commodity than maize, this technology might also increase farmers’ income potential.

News Archive

Shack study holds research and social upliftment opportunities
2015-02-10

Photo: Stephen Collett

When Prof Basie Verster, retired head of the Department of Quantity Surveying at the University of the Free State (UFS), initiated an alternative form of housing for Johannes - one of his employees - a decision was made to base research on this initiative. This research project in Grasslands, Heidedal focused on the cost and energy efficiency of green and/or sustainable shacks.

Esti Jacobs from the Department of Quantity Surveying, together with an honours student in Quantity Surveying, a master’s student in Architecture, and young professionals at Verster Berry, helped with the project.

The physical goals of the project were to create a structure that is environmentally friendly, and maintains a comfortable interior climate in winter and summer, as well as being cost-effective to erect. The structure also had to be socially acceptable to the family and the community.

“The intention was to make a positive contribution to the community and to initiate social upliftment through this project. Structures such as the ‘green shack’ may serve as an intermediate step to future housing possibilities, since these structures are relatively primitive, but have economic value and could be marketable,” she said.

Esti explains the structure of the building, which consists of gum poles and South African pine bearers, with a timber roof and internal cement block flooring. The building is clad with corrugated iron and has a corrugated iron roof finish. Additional green elements added to the structure were internal Nutec cladding, glasswool insulation in walls, internal gypsum ceiling boards with ‘Think Pink’ insulation, internal dividing wall and door, polystyrene in the floors, and tint on the windows. A small solar panel for limited electricity use (one or two lights and electricity to charge a cellphone) and a Jojo water tank for household consumption by the inhabitants were also installed.

Esti said: “Phase one of the research has been completed. This phase consisted of an investigation into the cost of an alternative form of housing structure (comparing traditional shacks with the planned structure) as well as the construction process of the physical housing structure.

“Phase two of the research, commencing in February 2015, will last for two to three years. This phase will include the installation of temperature and relative humidity logging devices inside the existing traditional shack and the new green shack. The logs will be regularly monitored by the UFS Department of Quantity Surveying and Construction Management.

These data will enable the researchers to measure the differences in comfort levels inside the two different structures. The data, together with other information such as building materials and methods, are then processed by software programs. Through the simulation of different environments, building materials, and alternate forms of energy, software models can be used to come up with conclusions regarding more energy-friendly building materials and methods. This knowledge can be used to improve comfort levels within smaller, low-cost housing units.

The UFS will be working with Prof Jeff Ramsdell of the Appalachian State University in the USA and his team on the second phase of the project.

“This research project is ongoing and will be completed only in a few years’ time,” said Esti.

The results of the research will be published in accredited journals or at international conferences.

 

For more information or enquiries contact news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept