Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2025 | Story Gerda-Marie van Rooyen | Photo Supplied
Prof Linus Franke
Leading the research in South Africa is Prof Linus Franke from the Department of Soil, Crop and Climate Sciences.

Scientists are actively pursuing the successful breeding of diploid hybrid potatoes from inbred lines. This is expected to revolutionise potato breeding as it holds the key to rapid genetic progress. It will introduce new varieties for commercialisation through seed. Currently, existing potato variants have a gene that renders self-pollinated seeds infertile.

Prof Linus Franke, an academic in the Department of Soil, Crop and Climate Sciences at the UFS, is leading the research in South Africa. “This technology allows the production of genetically uniform potato seed that is easy to transport and largely disease-free.” He says this differs from conventional breeding whereby only vegetative propagation is possible due to tetraploid varieties in potatoes. It also risks carrying pests and diseases from one generation to the next – leading to the accumulation of pests and diseases with each round of multiplication.

Seed innovation

Prof Franke explains that Solynta BV, a seed company based in the Netherlands that produces potato varieties that can be grown from seed, has included South Africa in their research efforts because it is one of Africa’s largest producers and exporters. Through his academic relationship with Wageningen University and Research, a Dutch institution renowned for its agricultural endeavours and food production, the UFS became involved in researching hybrid potatoes grown from seed.

Diploid seeds containing two sets of chromosomes allow easier gene manipulation to increase predictability and speedier genetic progress. The breeding approach enables the incorporation of tolerance to pests, diseases, abiotic stresses (cold, heat, drought) and other desired genetic traits.

Although Prof Franke is optimistic about this research, he is not blind to disadvantages. “Potato seeds are tiny and have little energy reserves, making it harder to grow potatoes from seed than from tubers.” He says potatoes from seed will take longer to cultivate than tubers, as farmers need to grow plantlets from seeds first, adding six weeks to the growing period. “It is possible that commercial farmers can grow potatoes directly from seed. Alternatively, perhaps more likely, specialised growers will produce tubers of potatoes from seed; these tubers are then sold as seed tubers to other potato farmers, who then continue their normal practices of producing potatoes for the market from tubers.”

Financial benefits

Prof Franke says farmers have reason to get excited. “Seed potatoes will reduce input costs, as varieties with enhanced tolerance to pests and diseases require less pesticides. Planting one hectare of potatoes requires three to four tonnes of potato tubers, but only one 25 g packet of potato seeds.” Since potatoes are a more valuable commodity than maize, this technology might also increase farmers’ income potential.

News Archive

SARChI Chair on disease resistance and quality in field crops awarded in UFS Department of Plant Science
2016-02-01

Description: SARChI Chair  Tags: SARChI Chair

Prof Labuschagne

A South African Research Chairs Initiative (SARChI) chair has been awarded in the Department of Plant Sciences at the University of the Free State (UFS). The chair will be headed by Prof Maryke Labuschagne, and will focus on crop quality breeding and disease resistance in field crops.

The disease resistance research by the chair will be headed by Prof Zakkie Pretorius. The disease resistance breeding will be a continuation of the internationally-acclaimed wheat rust research that Prof Pretorius has been conducting during his career.

The quality breeding will focus on crop protein quantity and quality as well as on iron, zinc, and beta carotene biofortification of staple crops such as wheat, maize, and cassava.

Prof Labuschagne believes that food security is one of the key factors for stability and prosperity on the continent. Her research and that of her students focuses on the genetic improvement of food security crops in Africa, including such staples as maize and cassava. “These crops are genetically improved for yield, drought tolerance, disease, and insect resistance, as well nutritional value,” she said.

Last year, one of  Prof Labuschagne’s PhD students, Bright Peprah, received an award for $473 000 from the competitive Program for Emerging Agricultural Research Leaders (PEARL) of the Bill and Melinda Gates Foundation for his project on improving the beta-carotene content in cassava.

Prof Labuschagne also received the prestigious ‘Continental Lifetime Achiever Award’ from Africa’s Most Influential Women in Business and Government Programme (MIW) last year for her commitment and continuous contributions to food security. She is an NRF-rated researcher, and author or co-author of over 160 articles in accredited journals.

Research Chairs have been designed by the Department of Science and Technology, together with the National Research Foundation, to attract and retain excellence in research and innovation at South African public universities. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept