Latest News Archive
Please select Category, Year, and then Month to display items
02 January 2025
|
Story Gerda-Marie van Rooyen
|
Photo Supplied
Leading the research in South Africa is Prof Linus Franke from the Department of Soil, Crop and Climate Sciences.
Scientists are actively pursuing the successful breeding of diploid hybrid potatoes from inbred lines. This is expected to revolutionise potato breeding as it holds the key to rapid genetic progress. It will introduce new varieties for commercialisation through seed. Currently, existing potato variants have a gene that renders self-pollinated seeds infertile.
Prof Linus Franke, an academic in the Department of Soil, Crop and Climate Sciences at the UFS, is leading the research in South Africa. “This technology allows the production of genetically uniform potato seed that is easy to transport and largely disease-free.” He says this differs from conventional breeding whereby only vegetative propagation is possible due to tetraploid varieties in potatoes. It also risks carrying pests and diseases from one generation to the next – leading to the accumulation of pests and diseases with each round of multiplication.
Seed innovation
Prof Franke explains that Solynta BV, a seed company based in the Netherlands that produces potato varieties that can be grown from seed, has included South Africa in their research efforts because it is one of Africa’s largest producers and exporters. Through his academic relationship with Wageningen University and Research, a Dutch institution renowned for its agricultural endeavours and food production, the UFS became involved in researching hybrid potatoes grown from seed.
Diploid seeds containing two sets of chromosomes allow easier gene manipulation to increase predictability and speedier genetic progress. The breeding approach enables the incorporation of tolerance to pests, diseases, abiotic stresses (cold, heat, drought) and other desired genetic traits.
Although Prof Franke is optimistic about this research, he is not blind to disadvantages. “Potato seeds are tiny and have little energy reserves, making it harder to grow potatoes from seed than from tubers.” He says potatoes from seed will take longer to cultivate than tubers, as farmers need to grow plantlets from seeds first, adding six weeks to the growing period. “It is possible that commercial farmers can grow potatoes directly from seed. Alternatively, perhaps more likely, specialised growers will produce tubers of potatoes from seed; these tubers are then sold as seed tubers to other potato farmers, who then continue their normal practices of producing potatoes for the market from tubers.”
Financial benefits
Prof Franke says farmers have reason to get excited. “Seed potatoes will reduce input costs, as varieties with enhanced tolerance to pests and diseases require less pesticides. Planting one hectare of potatoes requires three to four tonnes of potato tubers, but only one 25 g packet of potato seeds.” Since potatoes are a more valuable commodity than maize, this technology might also increase farmers’ income potential.
SADoCoL receives partial reinstatement of blood sample testing by the World Anti-Doping Agency
2016-08-22
Last week, the World Anti-Doping Agency (WADA) announced the lifting of the suspension of blood sample analysis by the South African Doping Control Laboratory (SADoCoL) at the University of the Free State (UFS). Although the suspension of urine sample analysis is still under review, the UFS is appreciative of the new outcome. The initial temporary suspension of SADoCoL, announced on 3 May 2016, included the suspension of all doping-control procedures which applied to both urine and blood samples.
The main reason for the suspension involved analytical techniques relevant to urine analysis; however, the testing of blood samples was also included in the suspension. At the time of the suspension, no adverse findings were reported for the laboratory in relation to blood-sample testing for Athlete Blood Passport (ABP) assessment.
According to the agreement with WADA, the suspension period would be utilised to implement and test new systems in order to achieve the standard presently required by WADA, as well as to perform development and improvements. SADoCoL is a specialised service laboratory of the UFS and has been in existence for more than thirty years.
Upon SADoCoL’s request to lift the suspension of only the ABP analysis, WADA agreed to allow the laboratory to apply for reaccreditation. SADoCoL immediately applied for reaccreditation of ABP analysis on blood, so that the laboratory would be allowed to at least offer this service to the Anti-Doping community in Africa.
For this purpose, inspections were performed by the South African National Accreditation System (SANAS) and by WADA, during which all aspects of blood analysis by the laboratory were thoroughly assessed and tested. The successful outcome of these inspections resulted in the reaccreditation of SADoCoL by WADA in order to perform ABP analysis as required by the WADA International Standard for Laboratories, with effect from 4 August 2016.
This outcome allows the laboratory to once again perform this very essential analytical procedure. The South African Institute for Drug-Free Sport (SAIDS) and other regular users can now continue to send blood samples to SADoCoL for ABP analysis, instead of making use of alternative laboratories.
Released by: Lacea Loader (Director: Communication and Brand Management)
Tel: +27 51 401 3422/2707 or +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393