Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 January 2025 | Story Gerda-Marie van Rooyen | Photo Supplied
Prof Linus Franke
Leading the research in South Africa is Prof Linus Franke from the Department of Soil, Crop and Climate Sciences.

Scientists are actively pursuing the successful breeding of diploid hybrid potatoes from inbred lines. This is expected to revolutionise potato breeding as it holds the key to rapid genetic progress. It will introduce new varieties for commercialisation through seed. Currently, existing potato variants have a gene that renders self-pollinated seeds infertile.

Prof Linus Franke, an academic in the Department of Soil, Crop and Climate Sciences at the UFS, is leading the research in South Africa. “This technology allows the production of genetically uniform potato seed that is easy to transport and largely disease-free.” He says this differs from conventional breeding whereby only vegetative propagation is possible due to tetraploid varieties in potatoes. It also risks carrying pests and diseases from one generation to the next – leading to the accumulation of pests and diseases with each round of multiplication.

Seed innovation

Prof Franke explains that Solynta BV, a seed company based in the Netherlands that produces potato varieties that can be grown from seed, has included South Africa in their research efforts because it is one of Africa’s largest producers and exporters. Through his academic relationship with Wageningen University and Research, a Dutch institution renowned for its agricultural endeavours and food production, the UFS became involved in researching hybrid potatoes grown from seed.

Diploid seeds containing two sets of chromosomes allow easier gene manipulation to increase predictability and speedier genetic progress. The breeding approach enables the incorporation of tolerance to pests, diseases, abiotic stresses (cold, heat, drought) and other desired genetic traits.

Although Prof Franke is optimistic about this research, he is not blind to disadvantages. “Potato seeds are tiny and have little energy reserves, making it harder to grow potatoes from seed than from tubers.” He says potatoes from seed will take longer to cultivate than tubers, as farmers need to grow plantlets from seeds first, adding six weeks to the growing period. “It is possible that commercial farmers can grow potatoes directly from seed. Alternatively, perhaps more likely, specialised growers will produce tubers of potatoes from seed; these tubers are then sold as seed tubers to other potato farmers, who then continue their normal practices of producing potatoes for the market from tubers.”

Financial benefits

Prof Franke says farmers have reason to get excited. “Seed potatoes will reduce input costs, as varieties with enhanced tolerance to pests and diseases require less pesticides. Planting one hectare of potatoes requires three to four tonnes of potato tubers, but only one 25 g packet of potato seeds.” Since potatoes are a more valuable commodity than maize, this technology might also increase farmers’ income potential.

News Archive

Research on locomotion of giraffes valuable for conservation of this species
2016-08-23

Description: Giraffe research 2016 Tags: Giraffe research 2016

Technology was used in filming the giraffes.
According to research, giraffes will slow
down when a drone is positioned
approximately 20 - 30 m away. When the
drone moves closer, they will revert
to galloping.
Photo: Charl Devenish


The meaning of the Arab term Giraffe Camelopardalis is ‘someone who walks fast’. It is precisely this locomotion of their longnecks that encouraged researchers, Dr Francois Deacon and Dr Chris Basu, to study the animals more closely.

Despite the fact that giraffes are such well-known animals, very little research has been done on the manner in which these graceful animals locomote from one place to the next. There are only two known ways of locomotion: the slower lateral walking and the faster galloping. Most animals use these ways of moving forward. It is unknown why giraffes avoid intermediate-speed trotting.

Research of great value to the industry

Research on the manner in which giraffes locomote from one place to the next will assist the industry in understanding aspects such as their anatomy and function, as well as the energy they utilise in locomoting from one place to another. Information on the latter could help researchers understand where giraffes fit into the ecosystem. This data is of great value for large-scale conservation efforts.

Universities working together to collect data

Dr Basu, a veterinarian at the Royal Veterinary College in the UK, has studied the animals at a zoo park in the United Kingdom. He visited the University of the Free State (UFS) in order to expand his fieldwork on the locomotion of giraffes. This study was done in cooperation with Dr Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research in South Africa and other African countries.

The fieldwork for the research, which was done in the Woodland Hills Wildlife Estate and the Willem Pretorius Nature Reserve, preceded research on the movement and the forces involved in the locomotion of giraffes. Due to the confined fenced area in the zoo park, it was practically impossible to study the animals at speed. “The study of actions ‘faster than walking’ is crucial for gathering data on, inter alia, the frequency, length, and time associated with each step.


Technology such as drones offers unique
opportunities to study animals like giraffes.



Technology used to ensure accuracyTechnology such as drones offers unique opportunities to study animals like giraffes. Apart from the fact that it is possible to get high-quality video material of giraffes – moving at speed – it is also a very controlled device that ensures the accuracy of data.

It is the first time ever that a study has been done on the locomotion of giraffes with this level of detail.
Research on the study will be published in the Journal of Experimental Biology.

The project was approved by the UFS ethics committee.

 

 

 

Previous research articles:

9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept