Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 January 2025 | Story Lacea Loader | Photo Supplied
Jurie Blignaut
Jurie Blignaut, top achiever in the 2024 matric exams for quintile four schools in SA and finalist of the UFS 2024 Matriculant of the Year competition.

The University of the Free State (UFS) is proud to announce that the top achiever in the 2024 matric exams for quintile four schools in the country, Jurie Blignaut, will be studying towards an MBChB at the UFS from 2025.

Blignaut, a pupil of the Rustenburg High School, was one of the 14 finalists in the 2024 UFS Matriculant of the Year competition.

“Congratulations to Jurie on this wonderful achievement. We look forward to welcoming him and our cohort of 2025 first-year students to our campuses,” says Prof Anthea Rhoda, acting Vice-Chancellor and Principal of the UFS. 

Boasting 11 distinctions and an average of 96,5%, Blignaut is not only an exceptional academic achiever but also participates in several cultural activities. He was the winner of the Kovsie Alumni Trust’s special award for personal cultural achievement in the final round of the competition. This head boy of his school is an excellent public speaker and musician. 

Blignaut’s highest achievement in public speaking was his national second place in last year’s ATKV public speaking competition in the section for Afrikaans home language. He plays the cello and has performed solo with the Pretoria Symphony Orchestra, was part of the school choir and band, and participated in the Stellenbosch International Chamber Music Festival. 

“On behalf of the university management, I would also like to congratulate Dr Mantlhake Maboya, MEC for Education in the Free State, and her executive team on the Free State being the top-achieving province in South Africa,” says Prof Rhoda. 

Other finalists in the 2024 UFS Matriculant of the Year competition who excelled during the matric exams include Susan Bender from Voortrekker High School – top achiever in the Free State province – and Chris Goosen from Grey College Secondary School, who is also one of the top achievers in the Free State. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept