Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2025 | Story Charlene Stanley | Photo Supplied
University of the Free State - Main Gate
The THE rankings are known to guide potential students to identify the best institutions for their chosen field of study, allowing them to compare different universities based on the strength of their academic offerings in specific study fields.

The recently published Times Higher Education (THE) World University Rankings by Subject 2025 shows that the University of the Free State (UFS) is ranked among the top 1 000 global higher learning institutions in its nine evaluated subjects, with most subject areas showing improved results from those recorded in 2024. 

The annually published THE World University Rankings by Subject is a highly regarded, trusted global benchmark for academic excellence in specific disciplines. Its methodology is designed to evaluate universities by employing a range of performance indicators categorised under five core pillars, namely Teaching, Research Environment, Research Quality, Industry, and International Outlook. 

Under Teaching, factors such as reputation, student-to-staff ratio, doctorate-to-bachelor ratio, and institutional income are considered. The Research pillar focuses on aspects such as productivity, citation impact, and influence. Among the other considerations are the income generated from industry partnerships and patents, as well as the number of international students, staff, and co-authored publications.

The methodology is carefully adjusted for each subject, ensuring fairness and accuracy by considering field-specific research cultures and publication practices.

The complete list of UFS subject rankings is as follows:

Law: 301+  *
Arts and Humanities: 501-600 # 
Education Studies: 501-600  #
Psychology: 501-600  #
Life Sciences: 601-800  #
Social Sciences: 601-800 #
Medical and Health: 801-1 000  #

Physical Sciences: 801-1 000 #

*The “+” label indicates that there is no upper limit and is used in instances where the THE does not provide exact ranks for universities beyond this position, therefore grouping institutions together to avoid overly fine distinctions at lower ranking tiers. (Eg. 801+ indicates 801st or lower.)

# The range label (eg. 801-1000), indicates that a university is ranked somewhere within this narrower range, (eg. between 801st  and 1000th. )

For more detail, visit: www.timeshighereducation.com

The THE rankings are known to guide potential students to identify the best institutions for their chosen field of study, allowing them to compare different universities based on the strength of their academic offerings in specific study fields. It also often paves the way for research collaboration, as companies are more likely to partner with highly ranked institutions in a specific sector for research and development projects. Furthermore, strong subject rankings enhance the international reputation of universities and enable comprehensive comparison in particular disciplines.

“This type of global benchmarking is extremely valuable in enhancing the international reputation of the UFS, enabling us to ultimately recruit and attract the most talented students and staff from our region and from across the globe. This aligns with our institutional strategy contained in Vision 130, whereby we aim to grow and extend our impact and influence locally, regionally, and globally,” says Prof Anthea Rhoda, acting UFS Vice-Chancellor and Principal. “Valuable knowledge and insights are also garnered during each evaluation process, allowing us to remain a globally competitive force in higher education, and to take the UFS to even greater heights in the years to come.”

Click to view document Click to view UFS Times Higher Subject Scores

News Archive

Nobel Prize-winner presents first lecture at Vice-Chancellor’s prestige lecture series
2017-11-17


 Description: Prof Levitt visit Tags: Prof Levitt visit

At the first lecture in the UFS Vice Chancellor’s Prestige Lecture series,
were from the left: Prof Jeanette Conradie, UFS Department of Chemistry;
Prof Michael Levitt, Nobel Prize-winner in Chemistry, biophysicist and
professor in structural biology at Stanford University; Prof Francis Petersen,
UFS Vice-Chancellor and Rector; and Prof Corli Witthuhn,
UFS Vice-Rector: Research. 
Photo: Johan Roux

South African born biophysicist and Nobel Prize-winner in Chemistry, Prof Michael Levitt, paid a visit to the University of the Free Sate (UFS) as part of the Academy of Science of South Africa’s (ASSAf) Distinguished Visiting Scholars’ Programme. 

Early this week the professor in structural biology at Stanford University in the US presented a captivating lecture on the Bloemfontein Campus on his lifetime’s work that earned him the Nobel Prize in 2013. His lecture launched the UFS Vice-Chancellor’s Prestige Lecture series, aimed at knowledge sharing within, and beyond our university boundaries. 

Prof Levitt was one of the first researchers to conduct molecular dynamics simulations of DNA and proteins and developed the first software for this purpose. He received the prize for Chemistry, together with Martin Karplus and Arieh Warshel, “for the development of multiscale models for complex chemical systems”.

Attending the lecture were members of UFS management, academic staff from a range of faculties and other universities as well as young researchers. “Multiscale modelling is very much based on something that makes common sense,” Prof Levitt explained. “And that is to makes things as simple as possible, but not simpler. Everything needs to have the right level of simplicity, that is not too simple, but not too complicated.”  

An incredible mind
Prof Levitt enrolled for applied mathematics at the University of Pretoria at the age of 15. He visited his uncle and aunt in London after his first-year exams, and decided to stay on because they had a television, he claims. A series on molecular biology broadcast on BBC, sparked an interest that would lead Prof Levitt via Israel, and Cambridge, to the Nobel Prize stage – all of which turned out to be vital building blocks for his research career. 

Technology to the rescue
The first small protein model that Prof Levitt built was the size of a room. But that exercise led to the birth of multiscale modelling of macromolecules. For the man on the street, that translates to computerised models used to simulate protein action, and reaction. With some adaptations, the effect of medication can be simulated on human protein in a virtual world. 

“I was lucky to stand on the shoulder of giants,” he says about his accomplishments, and urges the young to be good and kind. “Be passionate about what you do, be persistent, and be original,” he advised.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept