Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2025 | Story Charlene Stanley | Photo Supplied
University of the Free State - Main Gate
The THE rankings are known to guide potential students to identify the best institutions for their chosen field of study, allowing them to compare different universities based on the strength of their academic offerings in specific study fields.

The recently published Times Higher Education (THE) World University Rankings by Subject 2025 shows that the University of the Free State (UFS) is ranked among the top 1 000 global higher learning institutions in its nine evaluated subjects, with most subject areas showing improved results from those recorded in 2024. 

The annually published THE World University Rankings by Subject is a highly regarded, trusted global benchmark for academic excellence in specific disciplines. Its methodology is designed to evaluate universities by employing a range of performance indicators categorised under five core pillars, namely Teaching, Research Environment, Research Quality, Industry, and International Outlook. 

Under Teaching, factors such as reputation, student-to-staff ratio, doctorate-to-bachelor ratio, and institutional income are considered. The Research pillar focuses on aspects such as productivity, citation impact, and influence. Among the other considerations are the income generated from industry partnerships and patents, as well as the number of international students, staff, and co-authored publications.

The methodology is carefully adjusted for each subject, ensuring fairness and accuracy by considering field-specific research cultures and publication practices.

The complete list of UFS subject rankings is as follows:

Law: 301+  *
Arts and Humanities: 501-600 # 
Education Studies: 501-600  #
Psychology: 501-600  #
Life Sciences: 601-800  #
Social Sciences: 601-800 #
Medical and Health: 801-1 000  #

Physical Sciences: 801-1 000 #

*The “+” label indicates that there is no upper limit and is used in instances where the THE does not provide exact ranks for universities beyond this position, therefore grouping institutions together to avoid overly fine distinctions at lower ranking tiers. (Eg. 801+ indicates 801st or lower.)

# The range label (eg. 801-1000), indicates that a university is ranked somewhere within this narrower range, (eg. between 801st  and 1000th. )

For more detail, visit: www.timeshighereducation.com

The THE rankings are known to guide potential students to identify the best institutions for their chosen field of study, allowing them to compare different universities based on the strength of their academic offerings in specific study fields. It also often paves the way for research collaboration, as companies are more likely to partner with highly ranked institutions in a specific sector for research and development projects. Furthermore, strong subject rankings enhance the international reputation of universities and enable comprehensive comparison in particular disciplines.

“This type of global benchmarking is extremely valuable in enhancing the international reputation of the UFS, enabling us to ultimately recruit and attract the most talented students and staff from our region and from across the globe. This aligns with our institutional strategy contained in Vision 130, whereby we aim to grow and extend our impact and influence locally, regionally, and globally,” says Prof Anthea Rhoda, acting UFS Vice-Chancellor and Principal. “Valuable knowledge and insights are also garnered during each evaluation process, allowing us to remain a globally competitive force in higher education, and to take the UFS to even greater heights in the years to come.”

Click to view document Click to view UFS Times Higher Subject Scores

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept