Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 January 2025 | Story Charlene Stanley | Photo Supplied
University of the Free State - Main Gate
The THE rankings are known to guide potential students to identify the best institutions for their chosen field of study, allowing them to compare different universities based on the strength of their academic offerings in specific study fields.

The recently published Times Higher Education (THE) World University Rankings by Subject 2025 shows that the University of the Free State (UFS) is ranked among the top 1 000 global higher learning institutions in its nine evaluated subjects, with most subject areas showing improved results from those recorded in 2024. 

The annually published THE World University Rankings by Subject is a highly regarded, trusted global benchmark for academic excellence in specific disciplines. Its methodology is designed to evaluate universities by employing a range of performance indicators categorised under five core pillars, namely Teaching, Research Environment, Research Quality, Industry, and International Outlook. 

Under Teaching, factors such as reputation, student-to-staff ratio, doctorate-to-bachelor ratio, and institutional income are considered. The Research pillar focuses on aspects such as productivity, citation impact, and influence. Among the other considerations are the income generated from industry partnerships and patents, as well as the number of international students, staff, and co-authored publications.

The methodology is carefully adjusted for each subject, ensuring fairness and accuracy by considering field-specific research cultures and publication practices.

The complete list of UFS subject rankings is as follows:

Law: 301+  *
Arts and Humanities: 501-600 # 
Education Studies: 501-600  #
Psychology: 501-600  #
Life Sciences: 601-800  #
Social Sciences: 601-800 #
Medical and Health: 801-1 000  #

Physical Sciences: 801-1 000 #

*The “+” label indicates that there is no upper limit and is used in instances where the THE does not provide exact ranks for universities beyond this position, therefore grouping institutions together to avoid overly fine distinctions at lower ranking tiers. (Eg. 801+ indicates 801st or lower.)

# The range label (eg. 801-1000), indicates that a university is ranked somewhere within this narrower range, (eg. between 801st  and 1000th. )

For more detail, visit: www.timeshighereducation.com

The THE rankings are known to guide potential students to identify the best institutions for their chosen field of study, allowing them to compare different universities based on the strength of their academic offerings in specific study fields. It also often paves the way for research collaboration, as companies are more likely to partner with highly ranked institutions in a specific sector for research and development projects. Furthermore, strong subject rankings enhance the international reputation of universities and enable comprehensive comparison in particular disciplines.

“This type of global benchmarking is extremely valuable in enhancing the international reputation of the UFS, enabling us to ultimately recruit and attract the most talented students and staff from our region and from across the globe. This aligns with our institutional strategy contained in Vision 130, whereby we aim to grow and extend our impact and influence locally, regionally, and globally,” says Prof Anthea Rhoda, acting UFS Vice-Chancellor and Principal. “Valuable knowledge and insights are also garnered during each evaluation process, allowing us to remain a globally competitive force in higher education, and to take the UFS to even greater heights in the years to come.”

Click to view document Click to view UFS Times Higher Subject Scores

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept