Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2025 | Story Martinette Brits | Photo Charl Devenish
NAS Conference
Leaders in science and innovation at the NAS Research Conference 2025. From the left: Prof Samuel Adelabu (Vice-Dean: Research and Postgraduate Studies in NAS), Prof Vasu Reddy (Deputy Vice-Chancellor: Research and Internationalisation), Prof Bonang Mohale (Chancellor), Prof Paul Oberholster (Dean of NAS), Dr Alba du Toit (Research Chair: Innovative Agro-Processing for Climate-Smart Food Systems), and Prof Daryl Codron (Department of Zoology and Entomology).

The inaugural Faculty of Natural and Agricultural Sciences (NAS) Research Conference at the University of the Free State (UFS) signalled a decisive shift in how science is being imagined and practised at the institution. The two-day gathering, which took place on 1 and 2 July 2025, not only showcased research excellence, but also marked the official launch of two flagship initiatives: the Green Futures Hub and the Complex Systems Hub. Both are designed to enable transdisciplinary research that connects across fields, responds to global and local challenges, and contributes to the university’s Vision 130 strategy.

The conference theme, Integrating science for societal impact and a sustainable future, framed the programme, which featured presentations by researchers, postgraduate students, and postdoctoral fellows across all NAS disciplines. Opening the event, Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences, said: “This is more than a research gathering. It’s a signal – a step forward in our faculty’s approach to science, innovation, and impact.”

He emphasised that in a world marked by climate instability, digital disruption, and growing inequality, science must step forward not only to understand the world, but also to help shape it. “Our goal is to create research pathways that are sustainable, collaborative, and responsive to both local and global needs,” he said. The Green Futures Hub and the Complex Systems Hub are practical, future-facing platforms that make that vision real – connecting researchers, government, industry, and communities, he explained.

 

A catalyst for agricultural and environmental transformation

Prof Wayne Truter, Executive Manager of the Green Futures Hub, introduced the initiative as a catalyst for bringing applied science and sustainability together. He asked how innovation can translate into practical solutions that serve society and the environment. “We often focus so deeply on our disciplines that we forget to ask how our work creates social and economic impact,” he said.

The Green Futures Hub is a virtual platform and flagship of agricultural and environmental stewardship and sustainable development. It fosters partnerships that unleash value through nature-based solutions, land rehabilitation, climate risk finance, water resource management, bio-energy innovations, and more – by connecting researchers with industry, government, and international stakeholders. It also supports initiatives that enhance food and water security, investigate the coexistence of mining and agriculture, and address the carbon and nitrogen economy. The hub serves as a space for funding, knowledge transfer, and community transformation.

Prof Truter noted that complex societal challenges – from sustainable agriculture to the energy transition – cannot be solved by isolated disciplines. “Research must be applied in ways that industry and communities can understand and value,” he said. “If we want businesses to believe in science, we must speak their language and show relevance. The Green Futures Hub exists to bridge that gap.”

 

Science that responds to complexity

Prof Oberholster explained that the faculty’s second major initiative – the Complex Systems Hub – is designed to equip researchers to solve pressing problems in a digitally interconnected age. By bringing together data science, AI, advanced modelling, and interdisciplinary design, the hub strengthens the university’s ability to respond to global challenges.

“These are not abstract concepts,” he said. “They are practical responses to the question: how can we do science that matters?”

Dr Jacques Maritz, Head of the Unit for Engineering Sciences, who presented the launch, emphasised that complexity is not a threat to science – it is a source of innovation. “Scalability, unpredictability, nonlinearity, and emergence – these aren’t just buzzwords. They define the future of research.”

The Complex Systems Hub is a digital platform that enables agile, multidisciplinary teams to develop integrated responses to major issues such as climate change, pandemics, and space science. It connects NAS entities such as the Green Futures Hub, the One Health Centre of Excellence, and Advanced Materials Research to foster collaboration and innovation.

Dr Maritz explained that the hub bridges academic research and real-world application by creating spaces where diverse fields intersect. “If we want research to move from lab scale to real-world solutions, we need diverse teams working together – no single field can do this alone.”

Current projects include eco-friendly materials for sustainable construction, scientific water management using algae, and genomic surveillance for public health – all united by one goal: to turn complexity into opportunity and data into direction.

 

Bringing research closer to impact

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, officially opened the conference and praised the faculty for its foresight and leadership. “This conference is not only about exchanging ideas,” he said, “but about igniting conversations that matter.” Science, he noted, is not a luxury of the privileged, but “the lifeblood of progress,” and its success must be measured not only in citations but in consequences.

He reminded delegates that global challenges such as climate change, food insecurity, and biodiversity loss are no longer distant threats, but urgent realities. “Science must respond – not with silence, but with solutions and deeper questions.”

Referencing the university’s Vision 130 strategy, Prof Reddy said the goal is not just to be research-intensive, but to reimagine the role of science in society. “The world doesn’t necessarily need more data,” he said. “It needs more direction. If our research does not touch lives, it is not reaching far enough.”

He described the conference as a space to “plant ideas, cross-pollinate disciplines, and harvest innovation,” and applauded the launch of the two new research hubs as engines of hope and practical impact. Addressing postgraduate students and early-career researchers directly, he encouraged them to be curious, collaborative, and courageous: “You are not simply here to follow footsteps. You are here to forge new paths.”

 

Building a future grounded in our own narratives

Prof Bonang Mohale, the Chancellor, reminded delegates that science cannot be separated from history, context, or social justice. Quoting Emeritus Professor J Edward Chamberlin, he asked: “If this is your land, where are your stories?” He challenged researchers to ensure that science is not only excellent but also rooted in African realities and driven by the desire to transform society.

“Those nations that make English compulsory but agriculture optional are destined to produce a citizenry that speaks fluently – but on an empty stomach,” he said. “We must do science that describes, defines, and shapes this country in our own image.”

 

A faculty on the move

Over the two-day programme, students and researchers presented cutting-edge work aligned with the faculty’s wide range of disciplines and the university’s strategic research goals. The conference replaced the Flash Fact competition as NAS’s flagship research platform.

In closing, Prof Oberholster invited delegates to make the most of the opportunity to engage across disciplines. “Let’s ensure that the science we do here continues to transform lives – locally, nationally, and globally.”

News Archive

Africa the birthplace of mathematics, says Prof Atangana
2017-11-17


 Description: Prof Abdon Atangana, African Award of Applied Mathematics  Tags: Prof Abdon Atangana, African Award of Applied Mathematics

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied

 

Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.

When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.

Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana. 

Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.

Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.

Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation. 

Fractal geometry

“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems. 

“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said. 

“Can Africa rise again?” Prof Atangana believes it can.

He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept