Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2025 | Story Martinette Brits | Photo Charl Devenish
NAS Conference
Leaders in science and innovation at the NAS Research Conference 2025. From the left: Prof Samuel Adelabu (Vice-Dean: Research and Postgraduate Studies in NAS), Prof Vasu Reddy (Deputy Vice-Chancellor: Research and Internationalisation), Prof Bonang Mohale (Chancellor), Prof Paul Oberholster (Dean of NAS), Dr Alba du Toit (Research Chair: Innovative Agro-Processing for Climate-Smart Food Systems), and Prof Daryl Codron (Department of Zoology and Entomology).

The inaugural Faculty of Natural and Agricultural Sciences (NAS) Research Conference at the University of the Free State (UFS) signalled a decisive shift in how science is being imagined and practised at the institution. The two-day gathering, which took place on 1 and 2 July 2025, not only showcased research excellence, but also marked the official launch of two flagship initiatives: the Green Futures Hub and the Complex Systems Hub. Both are designed to enable transdisciplinary research that connects across fields, responds to global and local challenges, and contributes to the university’s Vision 130 strategy.

The conference theme, Integrating science for societal impact and a sustainable future, framed the programme, which featured presentations by researchers, postgraduate students, and postdoctoral fellows across all NAS disciplines. Opening the event, Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences, said: “This is more than a research gathering. It’s a signal – a step forward in our faculty’s approach to science, innovation, and impact.”

He emphasised that in a world marked by climate instability, digital disruption, and growing inequality, science must step forward not only to understand the world, but also to help shape it. “Our goal is to create research pathways that are sustainable, collaborative, and responsive to both local and global needs,” he said. The Green Futures Hub and the Complex Systems Hub are practical, future-facing platforms that make that vision real – connecting researchers, government, industry, and communities, he explained.

 

A catalyst for agricultural and environmental transformation

Prof Wayne Truter, Executive Manager of the Green Futures Hub, introduced the initiative as a catalyst for bringing applied science and sustainability together. He asked how innovation can translate into practical solutions that serve society and the environment. “We often focus so deeply on our disciplines that we forget to ask how our work creates social and economic impact,” he said.

The Green Futures Hub is a virtual platform and flagship of agricultural and environmental stewardship and sustainable development. It fosters partnerships that unleash value through nature-based solutions, land rehabilitation, climate risk finance, water resource management, bio-energy innovations, and more – by connecting researchers with industry, government, and international stakeholders. It also supports initiatives that enhance food and water security, investigate the coexistence of mining and agriculture, and address the carbon and nitrogen economy. The hub serves as a space for funding, knowledge transfer, and community transformation.

Prof Truter noted that complex societal challenges – from sustainable agriculture to the energy transition – cannot be solved by isolated disciplines. “Research must be applied in ways that industry and communities can understand and value,” he said. “If we want businesses to believe in science, we must speak their language and show relevance. The Green Futures Hub exists to bridge that gap.”

 

Science that responds to complexity

Prof Oberholster explained that the faculty’s second major initiative – the Complex Systems Hub – is designed to equip researchers to solve pressing problems in a digitally interconnected age. By bringing together data science, AI, advanced modelling, and interdisciplinary design, the hub strengthens the university’s ability to respond to global challenges.

“These are not abstract concepts,” he said. “They are practical responses to the question: how can we do science that matters?”

Dr Jacques Maritz, Head of the Unit for Engineering Sciences, who presented the launch, emphasised that complexity is not a threat to science – it is a source of innovation. “Scalability, unpredictability, nonlinearity, and emergence – these aren’t just buzzwords. They define the future of research.”

The Complex Systems Hub is a digital platform that enables agile, multidisciplinary teams to develop integrated responses to major issues such as climate change, pandemics, and space science. It connects NAS entities such as the Green Futures Hub, the One Health Centre of Excellence, and Advanced Materials Research to foster collaboration and innovation.

Dr Maritz explained that the hub bridges academic research and real-world application by creating spaces where diverse fields intersect. “If we want research to move from lab scale to real-world solutions, we need diverse teams working together – no single field can do this alone.”

Current projects include eco-friendly materials for sustainable construction, scientific water management using algae, and genomic surveillance for public health – all united by one goal: to turn complexity into opportunity and data into direction.

 

Bringing research closer to impact

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, officially opened the conference and praised the faculty for its foresight and leadership. “This conference is not only about exchanging ideas,” he said, “but about igniting conversations that matter.” Science, he noted, is not a luxury of the privileged, but “the lifeblood of progress,” and its success must be measured not only in citations but in consequences.

He reminded delegates that global challenges such as climate change, food insecurity, and biodiversity loss are no longer distant threats, but urgent realities. “Science must respond – not with silence, but with solutions and deeper questions.”

Referencing the university’s Vision 130 strategy, Prof Reddy said the goal is not just to be research-intensive, but to reimagine the role of science in society. “The world doesn’t necessarily need more data,” he said. “It needs more direction. If our research does not touch lives, it is not reaching far enough.”

He described the conference as a space to “plant ideas, cross-pollinate disciplines, and harvest innovation,” and applauded the launch of the two new research hubs as engines of hope and practical impact. Addressing postgraduate students and early-career researchers directly, he encouraged them to be curious, collaborative, and courageous: “You are not simply here to follow footsteps. You are here to forge new paths.”

 

Building a future grounded in our own narratives

Prof Bonang Mohale, the Chancellor, reminded delegates that science cannot be separated from history, context, or social justice. Quoting Emeritus Professor J Edward Chamberlin, he asked: “If this is your land, where are your stories?” He challenged researchers to ensure that science is not only excellent but also rooted in African realities and driven by the desire to transform society.

“Those nations that make English compulsory but agriculture optional are destined to produce a citizenry that speaks fluently – but on an empty stomach,” he said. “We must do science that describes, defines, and shapes this country in our own image.”

 

A faculty on the move

Over the two-day programme, students and researchers presented cutting-edge work aligned with the faculty’s wide range of disciplines and the university’s strategic research goals. The conference replaced the Flash Fact competition as NAS’s flagship research platform.

In closing, Prof Oberholster invited delegates to make the most of the opportunity to engage across disciplines. “Let’s ensure that the science we do here continues to transform lives – locally, nationally, and globally.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept