Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2025 | Story Martinette Brits | Photo Charl Devenish
NAS Conference
Leaders in science and innovation at the NAS Research Conference 2025. From the left: Prof Samuel Adelabu (Vice-Dean: Research and Postgraduate Studies in NAS), Prof Vasu Reddy (Deputy Vice-Chancellor: Research and Internationalisation), Prof Bonang Mohale (Chancellor), Prof Paul Oberholster (Dean of NAS), Dr Alba du Toit (Research Chair: Innovative Agro-Processing for Climate-Smart Food Systems), and Prof Daryl Codron (Department of Zoology and Entomology).

The inaugural Faculty of Natural and Agricultural Sciences (NAS) Research Conference at the University of the Free State (UFS) signalled a decisive shift in how science is being imagined and practised at the institution. The two-day gathering, which took place on 1 and 2 July 2025, not only showcased research excellence, but also marked the official launch of two flagship initiatives: the Green Futures Hub and the Complex Systems Hub. Both are designed to enable transdisciplinary research that connects across fields, responds to global and local challenges, and contributes to the university’s Vision 130 strategy.

The conference theme, Integrating science for societal impact and a sustainable future, framed the programme, which featured presentations by researchers, postgraduate students, and postdoctoral fellows across all NAS disciplines. Opening the event, Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences, said: “This is more than a research gathering. It’s a signal – a step forward in our faculty’s approach to science, innovation, and impact.”

He emphasised that in a world marked by climate instability, digital disruption, and growing inequality, science must step forward not only to understand the world, but also to help shape it. “Our goal is to create research pathways that are sustainable, collaborative, and responsive to both local and global needs,” he said. The Green Futures Hub and the Complex Systems Hub are practical, future-facing platforms that make that vision real – connecting researchers, government, industry, and communities, he explained.

 

A catalyst for agricultural and environmental transformation

Prof Wayne Truter, Executive Manager of the Green Futures Hub, introduced the initiative as a catalyst for bringing applied science and sustainability together. He asked how innovation can translate into practical solutions that serve society and the environment. “We often focus so deeply on our disciplines that we forget to ask how our work creates social and economic impact,” he said.

The Green Futures Hub is a virtual platform and flagship of agricultural and environmental stewardship and sustainable development. It fosters partnerships that unleash value through nature-based solutions, land rehabilitation, climate risk finance, water resource management, bio-energy innovations, and more – by connecting researchers with industry, government, and international stakeholders. It also supports initiatives that enhance food and water security, investigate the coexistence of mining and agriculture, and address the carbon and nitrogen economy. The hub serves as a space for funding, knowledge transfer, and community transformation.

Prof Truter noted that complex societal challenges – from sustainable agriculture to the energy transition – cannot be solved by isolated disciplines. “Research must be applied in ways that industry and communities can understand and value,” he said. “If we want businesses to believe in science, we must speak their language and show relevance. The Green Futures Hub exists to bridge that gap.”

 

Science that responds to complexity

Prof Oberholster explained that the faculty’s second major initiative – the Complex Systems Hub – is designed to equip researchers to solve pressing problems in a digitally interconnected age. By bringing together data science, AI, advanced modelling, and interdisciplinary design, the hub strengthens the university’s ability to respond to global challenges.

“These are not abstract concepts,” he said. “They are practical responses to the question: how can we do science that matters?”

Dr Jacques Maritz, Head of the Unit for Engineering Sciences, who presented the launch, emphasised that complexity is not a threat to science – it is a source of innovation. “Scalability, unpredictability, nonlinearity, and emergence – these aren’t just buzzwords. They define the future of research.”

The Complex Systems Hub is a digital platform that enables agile, multidisciplinary teams to develop integrated responses to major issues such as climate change, pandemics, and space science. It connects NAS entities such as the Green Futures Hub, the One Health Centre of Excellence, and Advanced Materials Research to foster collaboration and innovation.

Dr Maritz explained that the hub bridges academic research and real-world application by creating spaces where diverse fields intersect. “If we want research to move from lab scale to real-world solutions, we need diverse teams working together – no single field can do this alone.”

Current projects include eco-friendly materials for sustainable construction, scientific water management using algae, and genomic surveillance for public health – all united by one goal: to turn complexity into opportunity and data into direction.

 

Bringing research closer to impact

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, officially opened the conference and praised the faculty for its foresight and leadership. “This conference is not only about exchanging ideas,” he said, “but about igniting conversations that matter.” Science, he noted, is not a luxury of the privileged, but “the lifeblood of progress,” and its success must be measured not only in citations but in consequences.

He reminded delegates that global challenges such as climate change, food insecurity, and biodiversity loss are no longer distant threats, but urgent realities. “Science must respond – not with silence, but with solutions and deeper questions.”

Referencing the university’s Vision 130 strategy, Prof Reddy said the goal is not just to be research-intensive, but to reimagine the role of science in society. “The world doesn’t necessarily need more data,” he said. “It needs more direction. If our research does not touch lives, it is not reaching far enough.”

He described the conference as a space to “plant ideas, cross-pollinate disciplines, and harvest innovation,” and applauded the launch of the two new research hubs as engines of hope and practical impact. Addressing postgraduate students and early-career researchers directly, he encouraged them to be curious, collaborative, and courageous: “You are not simply here to follow footsteps. You are here to forge new paths.”

 

Building a future grounded in our own narratives

Prof Bonang Mohale, the Chancellor, reminded delegates that science cannot be separated from history, context, or social justice. Quoting Emeritus Professor J Edward Chamberlin, he asked: “If this is your land, where are your stories?” He challenged researchers to ensure that science is not only excellent but also rooted in African realities and driven by the desire to transform society.

“Those nations that make English compulsory but agriculture optional are destined to produce a citizenry that speaks fluently – but on an empty stomach,” he said. “We must do science that describes, defines, and shapes this country in our own image.”

 

A faculty on the move

Over the two-day programme, students and researchers presented cutting-edge work aligned with the faculty’s wide range of disciplines and the university’s strategic research goals. The conference replaced the Flash Fact competition as NAS’s flagship research platform.

In closing, Prof Oberholster invited delegates to make the most of the opportunity to engage across disciplines. “Let’s ensure that the science we do here continues to transform lives – locally, nationally, and globally.”

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept