Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2025 | Story Martinette Brits | Photo Charl Devenish
NAS Conference
Leaders in science and innovation at the NAS Research Conference 2025. From the left: Prof Samuel Adelabu (Vice-Dean: Research and Postgraduate Studies in NAS), Prof Vasu Reddy (Deputy Vice-Chancellor: Research and Internationalisation), Prof Bonang Mohale (Chancellor), Prof Paul Oberholster (Dean of NAS), Dr Alba du Toit (Research Chair: Innovative Agro-Processing for Climate-Smart Food Systems), and Prof Daryl Codron (Department of Zoology and Entomology).

The inaugural Faculty of Natural and Agricultural Sciences (NAS) Research Conference at the University of the Free State (UFS) signalled a decisive shift in how science is being imagined and practised at the institution. The two-day gathering, which took place on 1 and 2 July 2025, not only showcased research excellence, but also marked the official launch of two flagship initiatives: the Green Futures Hub and the Complex Systems Hub. Both are designed to enable transdisciplinary research that connects across fields, responds to global and local challenges, and contributes to the university’s Vision 130 strategy.

The conference theme, Integrating science for societal impact and a sustainable future, framed the programme, which featured presentations by researchers, postgraduate students, and postdoctoral fellows across all NAS disciplines. Opening the event, Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences, said: “This is more than a research gathering. It’s a signal – a step forward in our faculty’s approach to science, innovation, and impact.”

He emphasised that in a world marked by climate instability, digital disruption, and growing inequality, science must step forward not only to understand the world, but also to help shape it. “Our goal is to create research pathways that are sustainable, collaborative, and responsive to both local and global needs,” he said. The Green Futures Hub and the Complex Systems Hub are practical, future-facing platforms that make that vision real – connecting researchers, government, industry, and communities, he explained.

 

A catalyst for agricultural and environmental transformation

Prof Wayne Truter, Executive Manager of the Green Futures Hub, introduced the initiative as a catalyst for bringing applied science and sustainability together. He asked how innovation can translate into practical solutions that serve society and the environment. “We often focus so deeply on our disciplines that we forget to ask how our work creates social and economic impact,” he said.

The Green Futures Hub is a virtual platform and flagship of agricultural and environmental stewardship and sustainable development. It fosters partnerships that unleash value through nature-based solutions, land rehabilitation, climate risk finance, water resource management, bio-energy innovations, and more – by connecting researchers with industry, government, and international stakeholders. It also supports initiatives that enhance food and water security, investigate the coexistence of mining and agriculture, and address the carbon and nitrogen economy. The hub serves as a space for funding, knowledge transfer, and community transformation.

Prof Truter noted that complex societal challenges – from sustainable agriculture to the energy transition – cannot be solved by isolated disciplines. “Research must be applied in ways that industry and communities can understand and value,” he said. “If we want businesses to believe in science, we must speak their language and show relevance. The Green Futures Hub exists to bridge that gap.”

 

Science that responds to complexity

Prof Oberholster explained that the faculty’s second major initiative – the Complex Systems Hub – is designed to equip researchers to solve pressing problems in a digitally interconnected age. By bringing together data science, AI, advanced modelling, and interdisciplinary design, the hub strengthens the university’s ability to respond to global challenges.

“These are not abstract concepts,” he said. “They are practical responses to the question: how can we do science that matters?”

Dr Jacques Maritz, Head of the Unit for Engineering Sciences, who presented the launch, emphasised that complexity is not a threat to science – it is a source of innovation. “Scalability, unpredictability, nonlinearity, and emergence – these aren’t just buzzwords. They define the future of research.”

The Complex Systems Hub is a digital platform that enables agile, multidisciplinary teams to develop integrated responses to major issues such as climate change, pandemics, and space science. It connects NAS entities such as the Green Futures Hub, the One Health Centre of Excellence, and Advanced Materials Research to foster collaboration and innovation.

Dr Maritz explained that the hub bridges academic research and real-world application by creating spaces where diverse fields intersect. “If we want research to move from lab scale to real-world solutions, we need diverse teams working together – no single field can do this alone.”

Current projects include eco-friendly materials for sustainable construction, scientific water management using algae, and genomic surveillance for public health – all united by one goal: to turn complexity into opportunity and data into direction.

 

Bringing research closer to impact

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, officially opened the conference and praised the faculty for its foresight and leadership. “This conference is not only about exchanging ideas,” he said, “but about igniting conversations that matter.” Science, he noted, is not a luxury of the privileged, but “the lifeblood of progress,” and its success must be measured not only in citations but in consequences.

He reminded delegates that global challenges such as climate change, food insecurity, and biodiversity loss are no longer distant threats, but urgent realities. “Science must respond – not with silence, but with solutions and deeper questions.”

Referencing the university’s Vision 130 strategy, Prof Reddy said the goal is not just to be research-intensive, but to reimagine the role of science in society. “The world doesn’t necessarily need more data,” he said. “It needs more direction. If our research does not touch lives, it is not reaching far enough.”

He described the conference as a space to “plant ideas, cross-pollinate disciplines, and harvest innovation,” and applauded the launch of the two new research hubs as engines of hope and practical impact. Addressing postgraduate students and early-career researchers directly, he encouraged them to be curious, collaborative, and courageous: “You are not simply here to follow footsteps. You are here to forge new paths.”

 

Building a future grounded in our own narratives

Prof Bonang Mohale, the Chancellor, reminded delegates that science cannot be separated from history, context, or social justice. Quoting Emeritus Professor J Edward Chamberlin, he asked: “If this is your land, where are your stories?” He challenged researchers to ensure that science is not only excellent but also rooted in African realities and driven by the desire to transform society.

“Those nations that make English compulsory but agriculture optional are destined to produce a citizenry that speaks fluently – but on an empty stomach,” he said. “We must do science that describes, defines, and shapes this country in our own image.”

 

A faculty on the move

Over the two-day programme, students and researchers presented cutting-edge work aligned with the faculty’s wide range of disciplines and the university’s strategic research goals. The conference replaced the Flash Fact competition as NAS’s flagship research platform.

In closing, Prof Oberholster invited delegates to make the most of the opportunity to engage across disciplines. “Let’s ensure that the science we do here continues to transform lives – locally, nationally, and globally.”

News Archive

Socially inclusive teaching provides solution to Grade 4 literacy challenges
2017-01-23

 Description: Motselisi Malebese Tags: Motselisi Malebese

Mots’elisi Malebese, postdoctoral Fellow of the Faculty
of Education at the University of the Free State (UFS) tackles
Grade 4 literacy challenges.
Photo: Rulanzen Martin

Imagine a teaching approach that inculcates richness of culture and knowledge to individual learners, thus enhancing equity, equality, social justice, freedom, hope and fairness in terms of learning opportunities for all, regardless of learners’ diversity.

This teaching strategy was introduced by Mots’elisi Malebese, postdoctoral Fellow of the Faculty of Education at the University of the Free State (UFS), whose thesis focuses on bringing together different skills, knowledge and expertise in a classroom environment in order to enhance learners’ competence in literacy.

A teaching approach to aid Grade 4 literacy competency
Titled, A Socially Inclusive Teaching Strategy to Respond to Problems of Literacy in a Grade 4 Class, Malebese’s post-doctoral research refers to an approach that improves listening, speaking, reading, writing, technical functioning and critical thinking. Malebese, who obtained her PhD qualification in June this year, says her research confirmed that, currently, Grade 4 is a bottleneck stage, at which learners from a low socio-economic background fall behind in their learning due to the transition from being taught in their home language to English as a medium of instruction.

Malebese, says: “My study, therefore, required practical intervention through participatory action research (PAR) to create conditions that foster space for empowerment.”

PAR indoctrinates a democratic way of living that is equitable, liberating and life-enhancing, by breaking away from traditional teaching methods. It involves forming coalitions with individuals with the least social, cultural and economic power.

Malebese’s thesis was encouraged by previous research that revealed that a lack of readiness for a transitional phase among learners, teachers’ inability to teach literacy efficiently, and poor parental involvement, caused many learners to experience a wide variety of learning barriers.

A co-teaching model was adopted in an effort to create a more socially inclusive classroom. This model involves one teacher providing every learner with the assistance he or she needs to succeed, while another teacher moves around the room and provides assistance to individual learners.

“Learners’ needs are served best by allowing them to demonstrate understanding in a variety of ways, because knowledge is conveyed and accomplished through collaborative work,” Malebese said.

She believes the most important benefit of this model is assuring that learners become teachers of their understanding and experiences through gained knowledge.

Roleplayers get involved using diverse expertise in their field
Teachers, parents and several NGOs played a vital role in Malebese’s study by getting involved in training, sewing and cooking clubs every weekend and during school holidays. English was the medium of teaching and learning in every activity. A lodge, close to the school, offered learners training in mountain biking and hiking. These activities helped learners become tour guides. Storyteller Gcina Mhlophe presented learners with a gift of her latest recorded storytelling CD and books. Every day after school, learners would read, and have drama lessons once a week.

AfriGrow, an organisation that works with communities, the government and the corporate sector to develop sustainable community-driven livelihoods through agricultural and nutrition programmes, provided learners with seedlings, manure and other garden inputs and training on how to start a sustainable food garden. The children were also encouraged to participate in sporting activities like soccer and netball.

“I was aware that I needed a large toolbox of instructional strategies, and had to involve other stakeholders with diverse expertise in their field,” Malebese said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept