Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 July 2025 | Story Martinette Brits | Photo Charl Devenish
NAS Conference
Leaders in science and innovation at the NAS Research Conference 2025. From the left: Prof Samuel Adelabu (Vice-Dean: Research and Postgraduate Studies in NAS), Prof Vasu Reddy (Deputy Vice-Chancellor: Research and Internationalisation), Prof Bonang Mohale (Chancellor), Prof Paul Oberholster (Dean of NAS), Dr Alba du Toit (Research Chair: Innovative Agro-Processing for Climate-Smart Food Systems), and Prof Daryl Codron (Department of Zoology and Entomology).

The inaugural Faculty of Natural and Agricultural Sciences (NAS) Research Conference at the University of the Free State (UFS) signalled a decisive shift in how science is being imagined and practised at the institution. The two-day gathering, which took place on 1 and 2 July 2025, not only showcased research excellence, but also marked the official launch of two flagship initiatives: the Green Futures Hub and the Complex Systems Hub. Both are designed to enable transdisciplinary research that connects across fields, responds to global and local challenges, and contributes to the university’s Vision 130 strategy.

The conference theme, Integrating science for societal impact and a sustainable future, framed the programme, which featured presentations by researchers, postgraduate students, and postdoctoral fellows across all NAS disciplines. Opening the event, Prof Paul Oberholster, Dean of the Faculty of Natural and Agricultural Sciences, said: “This is more than a research gathering. It’s a signal – a step forward in our faculty’s approach to science, innovation, and impact.”

He emphasised that in a world marked by climate instability, digital disruption, and growing inequality, science must step forward not only to understand the world, but also to help shape it. “Our goal is to create research pathways that are sustainable, collaborative, and responsive to both local and global needs,” he said. The Green Futures Hub and the Complex Systems Hub are practical, future-facing platforms that make that vision real – connecting researchers, government, industry, and communities, he explained.

 

A catalyst for agricultural and environmental transformation

Prof Wayne Truter, Executive Manager of the Green Futures Hub, introduced the initiative as a catalyst for bringing applied science and sustainability together. He asked how innovation can translate into practical solutions that serve society and the environment. “We often focus so deeply on our disciplines that we forget to ask how our work creates social and economic impact,” he said.

The Green Futures Hub is a virtual platform and flagship of agricultural and environmental stewardship and sustainable development. It fosters partnerships that unleash value through nature-based solutions, land rehabilitation, climate risk finance, water resource management, bio-energy innovations, and more – by connecting researchers with industry, government, and international stakeholders. It also supports initiatives that enhance food and water security, investigate the coexistence of mining and agriculture, and address the carbon and nitrogen economy. The hub serves as a space for funding, knowledge transfer, and community transformation.

Prof Truter noted that complex societal challenges – from sustainable agriculture to the energy transition – cannot be solved by isolated disciplines. “Research must be applied in ways that industry and communities can understand and value,” he said. “If we want businesses to believe in science, we must speak their language and show relevance. The Green Futures Hub exists to bridge that gap.”

 

Science that responds to complexity

Prof Oberholster explained that the faculty’s second major initiative – the Complex Systems Hub – is designed to equip researchers to solve pressing problems in a digitally interconnected age. By bringing together data science, AI, advanced modelling, and interdisciplinary design, the hub strengthens the university’s ability to respond to global challenges.

“These are not abstract concepts,” he said. “They are practical responses to the question: how can we do science that matters?”

Dr Jacques Maritz, Head of the Unit for Engineering Sciences, who presented the launch, emphasised that complexity is not a threat to science – it is a source of innovation. “Scalability, unpredictability, nonlinearity, and emergence – these aren’t just buzzwords. They define the future of research.”

The Complex Systems Hub is a digital platform that enables agile, multidisciplinary teams to develop integrated responses to major issues such as climate change, pandemics, and space science. It connects NAS entities such as the Green Futures Hub, the One Health Centre of Excellence, and Advanced Materials Research to foster collaboration and innovation.

Dr Maritz explained that the hub bridges academic research and real-world application by creating spaces where diverse fields intersect. “If we want research to move from lab scale to real-world solutions, we need diverse teams working together – no single field can do this alone.”

Current projects include eco-friendly materials for sustainable construction, scientific water management using algae, and genomic surveillance for public health – all united by one goal: to turn complexity into opportunity and data into direction.

 

Bringing research closer to impact

Prof Vasu Reddy, Deputy Vice-Chancellor: Research and Internationalisation, officially opened the conference and praised the faculty for its foresight and leadership. “This conference is not only about exchanging ideas,” he said, “but about igniting conversations that matter.” Science, he noted, is not a luxury of the privileged, but “the lifeblood of progress,” and its success must be measured not only in citations but in consequences.

He reminded delegates that global challenges such as climate change, food insecurity, and biodiversity loss are no longer distant threats, but urgent realities. “Science must respond – not with silence, but with solutions and deeper questions.”

Referencing the university’s Vision 130 strategy, Prof Reddy said the goal is not just to be research-intensive, but to reimagine the role of science in society. “The world doesn’t necessarily need more data,” he said. “It needs more direction. If our research does not touch lives, it is not reaching far enough.”

He described the conference as a space to “plant ideas, cross-pollinate disciplines, and harvest innovation,” and applauded the launch of the two new research hubs as engines of hope and practical impact. Addressing postgraduate students and early-career researchers directly, he encouraged them to be curious, collaborative, and courageous: “You are not simply here to follow footsteps. You are here to forge new paths.”

 

Building a future grounded in our own narratives

Prof Bonang Mohale, the Chancellor, reminded delegates that science cannot be separated from history, context, or social justice. Quoting Emeritus Professor J Edward Chamberlin, he asked: “If this is your land, where are your stories?” He challenged researchers to ensure that science is not only excellent but also rooted in African realities and driven by the desire to transform society.

“Those nations that make English compulsory but agriculture optional are destined to produce a citizenry that speaks fluently – but on an empty stomach,” he said. “We must do science that describes, defines, and shapes this country in our own image.”

 

A faculty on the move

Over the two-day programme, students and researchers presented cutting-edge work aligned with the faculty’s wide range of disciplines and the university’s strategic research goals. The conference replaced the Flash Fact competition as NAS’s flagship research platform.

In closing, Prof Oberholster invited delegates to make the most of the opportunity to engage across disciplines. “Let’s ensure that the science we do here continues to transform lives – locally, nationally, and globally.”

News Archive

Inaugural lecture: Prof. Phillipe Burger
2007-11-26

 

Attending the lecture were, from the left: Prof. Tienie Crous (Dean of the Faculty of Economic and Management Sciences at the UFS), Prof. Phillipe Burger (Departmental Chairperson of the Department of Economics at the UFS), and Prof. Frederick Fourie (Rector and Vice-Chancellor of the UFS).
Photo: Stephen Collet

 
A summary of an inaugural lecture presented by Prof. Phillipe Burger on the topic: “The ups and downs of the South African Economy: Rough seas or smooth sailing?”

South African business cycle shows reduction in volatility

Better monetary policy and improvements in the financial sector that place less liquidity constraints on individuals is one of the main reasons for the reduction in the volatility of the South African economy. The improvement in access to the financial sector also enables individuals to manage their debt better.

These are some of the findings in an analysis on the volatility of the South African business cycle done by Prof. Philippe Burger, Departmental Chairperson of the University of the Free State’s (UFS) Department of Economics.

Prof. Burger delivered his inaugural lecture last night (22 November 2007) on the Main Campus in Bloemfontein on the topic “The ups and downs of the South African Economy: Rough seas or smooth sailing?”

In his lecture, Prof. Burger emphasised a few key aspects of the South African business cycle and indicated how it changed during the periods 1960-1976, 1976-1994 en 1994-2006.

With the Gross Domestic Product (GDP) as an indicator of the business cycle, the analysis identified the variables that showed the highest correlation with the GDP. During the periods 1976-1994 and 1994-2006, these included durable consumption, manufacturing investment, private sector investment, as well as investment in machinery and non-residential buildings. Other variables that also show a high correlation with the GDP are imports, non-durable consumption, investment in the financial services sector, investment by general government, as well as investment in residential buildings.

Prof. Burger’s analysis also shows that changes in durable consumption, investment in the manufacturing sector, investment in the private sector, as well as investment in non-residential buildings preceded changes in the GDP. If changes in a variable such as durable consumption precede changes in the GDP, it is an indication that durable consumption is one of the drivers of the business cycle. The up or down swing of durable consumption may, in other words, just as well contribute to an up or down swing in the business cycle.

A surprising finding of the analysis is the particularly strong role durable consumption has played in the business cycle since 1994. This finding is especially surprising due to the fact that durable consumption only constitutes about 12% of the total household consumption.

A further surprising finding is the particularly small role exports have been playing since 1960 as a driver of the business cycle. In South Africa it is still generally accepted that exports are one of the most important drivers of the business cycle. It is generally accepted that, should the business cycles of South Africa’s most important trade partners show an upward phase; these partners will purchase more from South Africa. This increase in exports will contribute to the South African economy moving upward. Prof. Burger’s analyses shows, however, that exports have generally never fulfil this role.

Over and above the identification of the drivers of the South African business cycle, Prof. Burger’s analysis also investigated the volatility of the business cycle.

When the periods 1976-1994 and 1994-2006 are compared, the analysis shows that the volatility of the business cycle has reduced since 1994 with more than half. The reduction in volatility can be traced to the reduction in the volatility of household consumption (especially durables and services), as well as a reduction in the volatility of investment in machinery, non-residential buildings and transport equipment. The last three coincide with the general reduction in the volatility of investment in the manufacturing sector. Investment in sectors such as electricity and transport (not to be confused with investment in transport equipment by various sectors) which are strongly dominated by the government, did not contribute to the decrease in volatility.

In his analysis, Prof. Burger supplies reasons for the reduction in volatility. One of the explanations is the reduction in the shocks affecting the economy – especially in the South African context. Another explanation is the application of an improved monetary policy by the South African Reserve Bank since the mid 1990’s. A third explanation is the better access to liquidity and credit since the mid 1990’s, which enables the better management of household finance and the absorption of financial shocks.

A further reason which contributed to the reduction in volatility in countries such as the United States of America’s business cycle is better inventory management. While the volatility of inventory in South Africa has also reduced there is, according to Prof. Burger, little proof that better inventory management contributed to the reduction in volatility of the GDP.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept