Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 July 2025 | Story Precious Shamase
UFS Green Campus Initiative Team
The UFS Green Campus Initiative team after being announced winners for the fourth consecutive year.

The University of the Free State (UFS) is celebrating an outstanding achievement at the 12th Annual Green Campuses Conference (GCC) 2025, where its dynamic Green Campus Initiative (GCI) team from the Qwaqwa Campus clinched the coveted Best Exhibition Award. This marks an unprecedented fourth consecutive year that the UFS has secured this prestigious accolade, highlighting its unwavering commitment to sustainability and innovation within the higher education landscape.

Hosted by Nelson Mandela University in Gqeberha, Eastern Cape, the conference was presented by the Association of College and University Housing Officers - International (ACUHO-I) under the profoundly relevant theme, Ubuntu and Environment: African Indigenous Knowledge in Sustainability. Endorsed by the Department of Higher Education and Training, the GCC serves as a pivotal platform for institutions of higher learning across South Africa to exchange vital knowledge, share best practices, and explore groundbreaking innovations in environmental sustainability and climate change mitigation.

The UFS GCI team's exhibition captivated judges and attendees alike with its exceptional creativity, innovative spirit, and profound dedication to envisioning a greener future. "The creativity, innovation, and commitment to sustainability shone through every detail of the display," remarked residential head Itumeleng Lebusho, "a true reflection of what it means to envision a greener future".

The five students who represented the institution were Amukelani Ngobeni, Minenhle Mnguni, Sinenhlanhla Mathabela, Charmaine Nokubonga Nkosi, and Thandolwethu Nyathikazi.

A cornerstone of the student-driven conference, the GCC featured three main categories: project presentations, a runway showcase, and the highly anticipated exhibition. UFS students excelled across the board, demonstrating their ingenuity in tackling real-world campus challenges with sustainable solutions.

A particularly notable project was the student-designed mobile trolley. Addressing a common predicament faced by students transporting groceries from the main gate to their residences due to campus restrictions on taxis for security reasons, the team engineered an innovative solution. This solar-powered mobile trolley, equipped with batteries and a motor, began as a prototype in 2024 and has since evolved into a testament to student-led problem-solving. While the current iteration requires a Code 8 driver's licence to operate, its potential to revolutionise campus mobility is clear.

The conference's annual theme encourages participants to devise sustainable solutions to problems faced on campus, a challenge that the UFS GCI team has embraced with remarkable success.

The UFS' consistent triumph at the GCC is a testament to the dedication and sacrifice of its students, whose forward-thinking ideas continue to push the boundaries of what is possible in campus greening. "The students worked in a way that we never imagined," expressed Desiree Motsele, Residence Head within Housing and Residence Affairs. "The ideas that they come up with are truly inspiring."

By actively participating in this significant event, the UFS is not only strengthening its commitment to creating a green campus but also fostering a healthy learning and living environment. This continued dedication prioritises sustainability, advances energy efficiency, champions resource conservation, and promotes environmental stewardship, solidifying the UFS' position as a leader in sustainable practices within South African higher education.

The Director: Student Affairs, Zoleka Dotwana, said she would like to congratulate the students on yet another gold they won at the GCI 2025. “The effort, the hard work, the commitment you have shown, has once again raised our UFS flag high. I hope the experience and the graduate attributes you have learnt in preparing your project will go a long way in providing you with great opportunities when you leave our shores. It has been an awesome journey over the four years, one that we hold dear and that will remain in the history books of our campus. Thank you for flying our flag high - Only a Kovsie knows the feeling!' said an ecstatic Dotwana.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept