Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 July 2025 | Story Precious Shamase
UFS Green Campus Initiative Team
The UFS Green Campus Initiative team after being announced winners for the fourth consecutive year.

The University of the Free State (UFS) is celebrating an outstanding achievement at the 12th Annual Green Campuses Conference (GCC) 2025, where its dynamic Green Campus Initiative (GCI) team from the Qwaqwa Campus clinched the coveted Best Exhibition Award. This marks an unprecedented fourth consecutive year that the UFS has secured this prestigious accolade, highlighting its unwavering commitment to sustainability and innovation within the higher education landscape.

Hosted by Nelson Mandela University in Gqeberha, Eastern Cape, the conference was presented by the Association of College and University Housing Officers - International (ACUHO-I) under the profoundly relevant theme, Ubuntu and Environment: African Indigenous Knowledge in Sustainability. Endorsed by the Department of Higher Education and Training, the GCC serves as a pivotal platform for institutions of higher learning across South Africa to exchange vital knowledge, share best practices, and explore groundbreaking innovations in environmental sustainability and climate change mitigation.

The UFS GCI team's exhibition captivated judges and attendees alike with its exceptional creativity, innovative spirit, and profound dedication to envisioning a greener future. "The creativity, innovation, and commitment to sustainability shone through every detail of the display," remarked residential head Itumeleng Lebusho, "a true reflection of what it means to envision a greener future".

The five students who represented the institution were Amukelani Ngobeni, Minenhle Mnguni, Sinenhlanhla Mathabela, Charmaine Nokubonga Nkosi, and Thandolwethu Nyathikazi.

A cornerstone of the student-driven conference, the GCC featured three main categories: project presentations, a runway showcase, and the highly anticipated exhibition. UFS students excelled across the board, demonstrating their ingenuity in tackling real-world campus challenges with sustainable solutions.

A particularly notable project was the student-designed mobile trolley. Addressing a common predicament faced by students transporting groceries from the main gate to their residences due to campus restrictions on taxis for security reasons, the team engineered an innovative solution. This solar-powered mobile trolley, equipped with batteries and a motor, began as a prototype in 2024 and has since evolved into a testament to student-led problem-solving. While the current iteration requires a Code 8 driver's licence to operate, its potential to revolutionise campus mobility is clear.

The conference's annual theme encourages participants to devise sustainable solutions to problems faced on campus, a challenge that the UFS GCI team has embraced with remarkable success.

The UFS' consistent triumph at the GCC is a testament to the dedication and sacrifice of its students, whose forward-thinking ideas continue to push the boundaries of what is possible in campus greening. "The students worked in a way that we never imagined," expressed Desiree Motsele, Residence Head within Housing and Residence Affairs. "The ideas that they come up with are truly inspiring."

By actively participating in this significant event, the UFS is not only strengthening its commitment to creating a green campus but also fostering a healthy learning and living environment. This continued dedication prioritises sustainability, advances energy efficiency, champions resource conservation, and promotes environmental stewardship, solidifying the UFS' position as a leader in sustainable practices within South African higher education.

The Director: Student Affairs, Zoleka Dotwana, said she would like to congratulate the students on yet another gold they won at the GCI 2025. “The effort, the hard work, the commitment you have shown, has once again raised our UFS flag high. I hope the experience and the graduate attributes you have learnt in preparing your project will go a long way in providing you with great opportunities when you leave our shores. It has been an awesome journey over the four years, one that we hold dear and that will remain in the history books of our campus. Thank you for flying our flag high - Only a Kovsie knows the feeling!' said an ecstatic Dotwana.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept