Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 July 2025 | Story Precious Shamase | Photo Supplied
SACE
Signing of the MoU between SACE and the UFS, which took place at the SACE Head Office in Centurion, Pretoria. Pictured are Prof Loyiso Jita, Dean: Education, and Ella Mokgalane, SACE CEO.

The University of the Free State (UFS) has taken a groundbreaking step in teacher education, becoming the first university in South Africa to facilitate the provisional registration of its student teachers with the South African Council for Educators (SACE) before they embark on their crucial Work Integrated Learning (WIL) phase. This landmark achievement follows the recent signing of a Memorandum of Understanding (MOU) between the UFS and SACE, solidifying a collaborative commitment to regulatory compliance and professional development for future educators.

 

Direct SACE support for student teachers

In June 2025, SACE representatives, led by Harold Tlomatsana, the Provincial Head for SACE in the Free State Province, conducted a dedicated support visit to the Qwaqwa Campus. The purpose of their visit was to directly assist student teachers in completing their online provisional registration applications. The university's Faculty of Education, through its Teaching Practice Directorate, played a pivotal role in this initiative, graciously providing access to its computer laboratories to ensure a seamless and efficient registration process for all students.

This proactive approach ensures that all UFS student teachers are officially registered with SACE, a vital prerequisite for their upcoming July practice teaching component. It is important to note that this provisional registration is distinct from employment-related functions; rather, it stresses the commitment of both institutions to ensure that all aspiring educators are properly recognised and compliant with national standards before gaining practical experience in classrooms.

The signing of the MOU by Prof Loyiso Jita, Dean of the Faculty of Education, alongside SACE representatives, marks a significant milestone. It not only formalises the partnership but also highlights the UFS' dedication to upholding the highest professional standards in teacher training.

 

A national precedent set

Prof Thuthukile Jita, Director of the Teaching Practice Directorate (TPD), expressed her enthusiasm for this pioneering collaboration. "This initiative is a testament to the hard work and foresight of our team in the Faculty of Education and the TPD office," said Prof Jita. "By partnering with SACE, we are not only streamlining a crucial administrative process for our students but also setting a national precedent for how universities can ensure that their future teachers are fully prepared and compliant with professional regulations from the very outset of their practical training."

The positive impact of this initiative will resonate across all UFS campuses – Bloemfontein, South, and Qwaqwa – stressing the comprehensive reach of the TPD office under Prof Jita's leadership.

 

Formalising a key partnership: a culmination of continued collaboration

The recent signing of the MOU formal agreement representing not only a new beginning, but rather a culmination of robust, continued collaboration between the UFS and SACE. Both institutions have long shared a commitment to ensuring the highest professional standards for future educators. The MOU formalises and strengthens these existing ties, highlighting the UFS' dedication to upholding the highest professional standards in teacher training and streamlining critical processes for its students.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept