Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2025 | Story Leonie Bolleurs | Photo Supplied
Anita Venter
According to Dr Anita Venter, eco-bricks help prevent further environmental degradation, a theme often highlighted by World Environment Day.

Students filling plastic bottles with tightly packed wrappers, chips packets, and cling wrap until they are sturdy may not look like revolutionaries, but that is exactly what they are. This Eco-Bricks initiative is a grassroots effort that transforms plastic waste into construction material, sparking environmental change from the ground up. From there, the possibilities multiply – from benches to buildings, and from awareness to action.

It is not just about just stuffing bottles; it is about shifting mindsets.

Dr Anita Venter, Lecturer in the Centre for Development Support at the University of the Free State (UFS), believes eco-bricks directly address the urgent need for solutions to plastic pollution. “By taking plastic out of the waste stream and giving it a new, useful life, we're actively participating in ecosystem restoration and preventing further environmental degradation, a theme often highlighted by World Environment Day.”

However, the Eco-Bricks project is doing more than managing waste. “Beyond this practical application, it serves as a powerful community development tool, empowering individuals to take control of waste management and fostering a vital environmental consciousness.”

And while we can dream of a plastic-free world, Dr Venter is grounded in today’s realities. “So, my approach is that I'd rather have plastic contained safely within a bottle – repurposed in a regenerative way – than seeing it break down into nano-plastics, poisoning our earth. This project is about finding practical solutions within our current reality.”

 

A no-cost solution 

Dr Venter does not lead from a podium; she is mentoring from the sidelines. “I'm primarily involved in mentoring our student champions. They are the real drivers, facilitating the eco-brick training peer-to-peer. It's about empowering them to spread the knowledge and skills, rather than me being the sole instructor. It’s a beautiful ripple effect.”

And ripple it does. “These initiatives continue in their communities, and that truly warms my heart,” she says. The students are taking the lessons home, creating a chain reaction of action and awareness. “It’s not just about building bricks; it’s about inspiring continued action.”

The concept’s biggest success story? Thousands of eco-bricks being used by the Natural Building Collective in the Western Cape for formalised buildings. Proof that what was started by students can reshape entire landscapes.

“I see eco-bricks as an incredible community development tool. What’s beautiful about it is that it’s a no-cost activity. Anyone who wants to start a community development initiative can pick it up, and they immediately reap the dual benefits of cleaning their environment and taking control of their own waste management. It’s very empowering on a grassroots level.”

 

Regeneration starts here

Dr Venter, who has been part of the initiative since 2013, sees it as integral to her broader environmental work as climate activist focusing on research related to housing, informal settlement upgrading, culture, socio-ecological development, regenerative design, and art. She is quick to connect plastic pollution to the deeper ecological crisis we face. “Plastic is a monumental environmental problem, rapidly leading to biodiversity collapse, which I honestly believe is a far more pressing issue than even the climate crisis itself. It’s stark – babies are now born with plastic in their tiny bodies, and these microplastics are found in every human organ. It’s a pervasive crisis.” 

With students and community leaders now steering the project, she is hopeful about the future: “The beauty of something so accessible and practical is that it doesn’t need top-down direction; it flourishes from the ground up as people recognise its value and adopt it.”

Dr Venter’s commitment to making waste meaningful goes well beyond the Eco-Bricks initiative. In the project What Remains Through Time, Slowness and Stillness, waste is transformed into meaningful art, and communities step into the role of co-creators. 

Using post-natural building techniques, the project incorporates both waste and natural materials, marrying ecological restoration with social transformation. Sites such as the Oliewenhuis Art Museum, Bloemfontein National Hospital, and Sekoele Holistic Living Arts Centre serve as hubs where participants can engage hands-on, learning new skills while strengthening their communities.

According to Dr Venter, the main activities at Oliewenhuis are from June to September this year. Here, the focus is on community collaboration and regenerative art that goes far beyond constructing physical spaces. “We’re aiming to break down social barriers and make art truly accessible and inclusive within public spaces. It’s as much about building community as it is about building structures,” she says.

So, what can you do?

Start where you are. Join an eco-brick or art-for-regeneration initiative. “Go beyond sustainability! We need to regenerate, to ‘renew, restore, revitalise’,” says Dr Venter. Attend a training event. Share what you learn. “That’s how we create real, lasting change – through shared knowledge and empowered action.”

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept