Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 June 2025 | Story Leonie Bolleurs | Photo Supplied
Anita Venter
According to Dr Anita Venter, eco-bricks help prevent further environmental degradation, a theme often highlighted by World Environment Day.

Students filling plastic bottles with tightly packed wrappers, chips packets, and cling wrap until they are sturdy may not look like revolutionaries, but that is exactly what they are. This Eco-Bricks initiative is a grassroots effort that transforms plastic waste into construction material, sparking environmental change from the ground up. From there, the possibilities multiply – from benches to buildings, and from awareness to action.

It is not just about just stuffing bottles; it is about shifting mindsets.

Dr Anita Venter, Lecturer in the Centre for Development Support at the University of the Free State (UFS), believes eco-bricks directly address the urgent need for solutions to plastic pollution. “By taking plastic out of the waste stream and giving it a new, useful life, we're actively participating in ecosystem restoration and preventing further environmental degradation, a theme often highlighted by World Environment Day.”

However, the Eco-Bricks project is doing more than managing waste. “Beyond this practical application, it serves as a powerful community development tool, empowering individuals to take control of waste management and fostering a vital environmental consciousness.”

And while we can dream of a plastic-free world, Dr Venter is grounded in today’s realities. “So, my approach is that I'd rather have plastic contained safely within a bottle – repurposed in a regenerative way – than seeing it break down into nano-plastics, poisoning our earth. This project is about finding practical solutions within our current reality.”

 

A no-cost solution 

Dr Venter does not lead from a podium; she is mentoring from the sidelines. “I'm primarily involved in mentoring our student champions. They are the real drivers, facilitating the eco-brick training peer-to-peer. It's about empowering them to spread the knowledge and skills, rather than me being the sole instructor. It’s a beautiful ripple effect.”

And ripple it does. “These initiatives continue in their communities, and that truly warms my heart,” she says. The students are taking the lessons home, creating a chain reaction of action and awareness. “It’s not just about building bricks; it’s about inspiring continued action.”

The concept’s biggest success story? Thousands of eco-bricks being used by the Natural Building Collective in the Western Cape for formalised buildings. Proof that what was started by students can reshape entire landscapes.

“I see eco-bricks as an incredible community development tool. What’s beautiful about it is that it’s a no-cost activity. Anyone who wants to start a community development initiative can pick it up, and they immediately reap the dual benefits of cleaning their environment and taking control of their own waste management. It’s very empowering on a grassroots level.”

 

Regeneration starts here

Dr Venter, who has been part of the initiative since 2013, sees it as integral to her broader environmental work as climate activist focusing on research related to housing, informal settlement upgrading, culture, socio-ecological development, regenerative design, and art. She is quick to connect plastic pollution to the deeper ecological crisis we face. “Plastic is a monumental environmental problem, rapidly leading to biodiversity collapse, which I honestly believe is a far more pressing issue than even the climate crisis itself. It’s stark – babies are now born with plastic in their tiny bodies, and these microplastics are found in every human organ. It’s a pervasive crisis.” 

With students and community leaders now steering the project, she is hopeful about the future: “The beauty of something so accessible and practical is that it doesn’t need top-down direction; it flourishes from the ground up as people recognise its value and adopt it.”

Dr Venter’s commitment to making waste meaningful goes well beyond the Eco-Bricks initiative. In the project What Remains Through Time, Slowness and Stillness, waste is transformed into meaningful art, and communities step into the role of co-creators. 

Using post-natural building techniques, the project incorporates both waste and natural materials, marrying ecological restoration with social transformation. Sites such as the Oliewenhuis Art Museum, Bloemfontein National Hospital, and Sekoele Holistic Living Arts Centre serve as hubs where participants can engage hands-on, learning new skills while strengthening their communities.

According to Dr Venter, the main activities at Oliewenhuis are from June to September this year. Here, the focus is on community collaboration and regenerative art that goes far beyond constructing physical spaces. “We’re aiming to break down social barriers and make art truly accessible and inclusive within public spaces. It’s as much about building community as it is about building structures,” she says.

So, what can you do?

Start where you are. Join an eco-brick or art-for-regeneration initiative. “Go beyond sustainability! We need to regenerate, to ‘renew, restore, revitalise’,” says Dr Venter. Attend a training event. Share what you learn. “That’s how we create real, lasting change – through shared knowledge and empowered action.”

News Archive

NRF grants of millions for Kovsie professors
2013-05-20

 

Prof Martin Ntwaeaborwa (left) and Prof Bennie Viljoen
20 May 2013


Two professors received research grants from the National Research Foundation (NRF). The money will be used for the purchase of equipment to add more value to their research and take the university further in specific research fields.

Prof Martin Ntwaeaborwa from the Department of Physics has received a R10 million award, following a successful application to the National Nanotechnology Equipment Programme (NNEP) of the NRF for a high-resolution field emission scanning electron microscope (SEM) with integrated cathodoluminescence (CL) and energy dispersive X-ray spectrometers (EDS).

Prof Bennie Viljoen from the Department of Microbial, Biochemical and Food Biotechnology has also been awarded R1,171 million, following a successful application to the Research Infrastructure Support Programme (RISP) for the purchase of a LECO CHN628 Series Elemental Analyser with a Sulphur add-on module.

Prof Ntwaeaborwa says the SEM-CL-EDS’ state-of-the art equipment combines three different techniques in one and it is capable of analysing a variety of materials ranging from bulk to individual nanoparticles. This combination is the first of its kind in Africa. This equipment is specifically designed for nanotechnology and can analyse particles as small as 5nm in diameter, a scale which the old tungsten SEM at the Centre of Microscopy cannot achieve.

The equipment will be used to simultaneously analyse the shapes and sizes of submicron particles, chemical composition and cathodoluminescence properties of materials. The SEM-CL-EDS is a multi-user facility and it will be used for multi- and interdisciplinary research involving physics, chemistry, materials science, life sciences and geological sciences. It will be housed at the Centre of Microscopy.
“I have no doubt that this equipment is going to give our university a great leap forward in research in the fields of electron microscopy and cathodoluminescence,” Prof Ntwaeaborwa said.

Prof Viljoen says the analyser is used to determine nitrogen, carbon/nitrogen, and carbon/hydrogen/nitrogen in organic matrices. The instrument utilises a combustion technique and provides a result within 4,5 minutes for all the elements being determined. In addition to the above, the machine also offers a sulphur add-on module which provides sulphur analysis for any element combination. The CHN 628 S module is specifically designed to determine the sulphur content in a wide variety of organic materials such as coal and fuel oils, as well as some inorganic materials such as soil, cement and limestone.

The necessity of environmental protection has stimulated the development of various methods, allowing the determination of different pollutants in the natural environment, including methods for determining inorganic nitrogen ions, carbon and sulphur. Many of the methods used so far have proven insufficiently sensitive, selective or inaccurate. The availability of the LECO analyser in a research programme on environmental pollution/ food security will facilitate accurate and rapid quantification of these elements. Ions in water, waste water, air, food products and other complex matrix samples have become a major problem and studies are showing that these pollutants are likely to cause severe declines in native plant communities and eventually food security.

“With the addition of the analyser, we will be able to identify these polluted areas, including air, water and land pollution, in an attempt to enhance food security,” Viljoen said. “Excess levels of nitrogen and phosphorous wreaking havoc on human health and food security, will be investigated.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept