Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 June 2025 | Story Tshepo Tsotetsi | Photo Tshepo Tsotetsi
Broadening Curricula Debate
Debaters from the Faculty of Economic and Management Sciences’ 2025 Broadening Curricula Debate.

In an engaging and thought-provoking session, the Faculty of Economic and Management Sciences (EMS) at the University of the Free State hosted its Broadening Curricula Faculty Debate Series under the motion: The current Economic and Management Sciences curricula, pedagogical approaches, and research endeavours perpetuate colonial legacies. Held on the Bloemfontein Campus on 3 June 2025, the debate brought together academics and, for the first time, students – making space for dynamic, intergenerational dialogue on the transformation of teaching and learning in higher education.

 

Creating space for critical pedagogical reflection

Annari Muller, manager of Teaching and Learning Manager in the faculty, said the aim was to provide a platform for constructive, sometimes challenging, engagement. “We create a platform for staff to debate these things and ultimately inform our practice, policy, pedagogy, and what we teach and how we teach,” she said.

For the first time, students were formally included in the debating teams, following feedback from previous events. “It is very important to include student perspectives as well,” Muller noted. “We want to continue these discussions, take them forward into our research practices and learning and teaching committees, where we will dissect them and act on the next step.”

This inclusion added new layers to the debate. Elda Nhalunga responsible for master’s student administration, said the topic immediately resonated with her. “When I saw decolonisation and curriculum in one motion, I found it very interesting and decided that this was something I wanted to be part of. I also wanted to hear what other scholars were saying.” She added: “Through these small initiatives, we are working towards transformation. And it’s important that students be there so that their voices are heard.”

 

Towards a more inclusive and just Academic Project

Prof Frans Prinsloo, Vice-Dean for Learning and Teaching, Innovation and Digitalisation,  believes that debates of this nature play a vital role in shaping inclusive academic spaces. “Debates, such as the one on decolonisation, enable us to engage with and reflect deeply on complex issues and to challenge existing assumptions. Through this process, the faculty can enhance its teaching practices and curriculum development.”

According to Prof Prinsloo, this kind of engagement is just the beginning. “The debate is but the start of the faculty’s plan to ensure that its Academic Project is decolonised. Research is currently in process to gather perceptions of staff and students on the topic. This research will drive action.”

Lukhanyo Lekeno, Economics master’s student, echoed this sentiment, calling the topic timely and essential. “We’re living in a world where there are certain standards and norms that, in most cases, exclude and marginalise people,” he said. “When we start having conversations about decoloniality, we are taking a step closer to actually dismantling certain legacies and ideologies that keep people constrained within a mindset.” Lekeno encouraged others to engage in such conversations, describing it as an ‘exchange of knowledge, systems, and perspectives’, which contributes to both personal growth and academic transformation.

Previous sessions in the series, such as the 2024 debate on socio-environmental sustainability, have prompted internal curriculum reviews, underscoring the faculty’s intention to link dialogue with institutional reflection.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept