Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 June 2025 | Story Tshepo Tsotetsi | Photo Tshepo Tsotetsi
Broadening Curricula Debate
Debaters from the Faculty of Economic and Management Sciences’ 2025 Broadening Curricula Debate.

In an engaging and thought-provoking session, the Faculty of Economic and Management Sciences (EMS) at the University of the Free State hosted its Broadening Curricula Faculty Debate Series under the motion: The current Economic and Management Sciences curricula, pedagogical approaches, and research endeavours perpetuate colonial legacies. Held on the Bloemfontein Campus on 3 June 2025, the debate brought together academics and, for the first time, students – making space for dynamic, intergenerational dialogue on the transformation of teaching and learning in higher education.

 

Creating space for critical pedagogical reflection

Annari Muller, manager of Teaching and Learning Manager in the faculty, said the aim was to provide a platform for constructive, sometimes challenging, engagement. “We create a platform for staff to debate these things and ultimately inform our practice, policy, pedagogy, and what we teach and how we teach,” she said.

For the first time, students were formally included in the debating teams, following feedback from previous events. “It is very important to include student perspectives as well,” Muller noted. “We want to continue these discussions, take them forward into our research practices and learning and teaching committees, where we will dissect them and act on the next step.”

This inclusion added new layers to the debate. Elda Nhalunga responsible for master’s student administration, said the topic immediately resonated with her. “When I saw decolonisation and curriculum in one motion, I found it very interesting and decided that this was something I wanted to be part of. I also wanted to hear what other scholars were saying.” She added: “Through these small initiatives, we are working towards transformation. And it’s important that students be there so that their voices are heard.”

 

Towards a more inclusive and just Academic Project

Prof Frans Prinsloo, Vice-Dean for Learning and Teaching, Innovation and Digitalisation,  believes that debates of this nature play a vital role in shaping inclusive academic spaces. “Debates, such as the one on decolonisation, enable us to engage with and reflect deeply on complex issues and to challenge existing assumptions. Through this process, the faculty can enhance its teaching practices and curriculum development.”

According to Prof Prinsloo, this kind of engagement is just the beginning. “The debate is but the start of the faculty’s plan to ensure that its Academic Project is decolonised. Research is currently in process to gather perceptions of staff and students on the topic. This research will drive action.”

Lukhanyo Lekeno, Economics master’s student, echoed this sentiment, calling the topic timely and essential. “We’re living in a world where there are certain standards and norms that, in most cases, exclude and marginalise people,” he said. “When we start having conversations about decoloniality, we are taking a step closer to actually dismantling certain legacies and ideologies that keep people constrained within a mindset.” Lekeno encouraged others to engage in such conversations, describing it as an ‘exchange of knowledge, systems, and perspectives’, which contributes to both personal growth and academic transformation.

Previous sessions in the series, such as the 2024 debate on socio-environmental sustainability, have prompted internal curriculum reviews, underscoring the faculty’s intention to link dialogue with institutional reflection.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept