Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 June 2025 | Story Tshepo Tsotetsi | Photo Tshepo Tsotetsi
Broadening Curricula Debate
Debaters from the Faculty of Economic and Management Sciences’ 2025 Broadening Curricula Debate.

In an engaging and thought-provoking session, the Faculty of Economic and Management Sciences (EMS) at the University of the Free State hosted its Broadening Curricula Faculty Debate Series under the motion: The current Economic and Management Sciences curricula, pedagogical approaches, and research endeavours perpetuate colonial legacies. Held on the Bloemfontein Campus on 3 June 2025, the debate brought together academics and, for the first time, students – making space for dynamic, intergenerational dialogue on the transformation of teaching and learning in higher education.

 

Creating space for critical pedagogical reflection

Annari Muller, manager of Teaching and Learning Manager in the faculty, said the aim was to provide a platform for constructive, sometimes challenging, engagement. “We create a platform for staff to debate these things and ultimately inform our practice, policy, pedagogy, and what we teach and how we teach,” she said.

For the first time, students were formally included in the debating teams, following feedback from previous events. “It is very important to include student perspectives as well,” Muller noted. “We want to continue these discussions, take them forward into our research practices and learning and teaching committees, where we will dissect them and act on the next step.”

This inclusion added new layers to the debate. Elda Nhalunga responsible for master’s student administration, said the topic immediately resonated with her. “When I saw decolonisation and curriculum in one motion, I found it very interesting and decided that this was something I wanted to be part of. I also wanted to hear what other scholars were saying.” She added: “Through these small initiatives, we are working towards transformation. And it’s important that students be there so that their voices are heard.”

 

Towards a more inclusive and just Academic Project

Prof Frans Prinsloo, Vice-Dean for Learning and Teaching, Innovation and Digitalisation,  believes that debates of this nature play a vital role in shaping inclusive academic spaces. “Debates, such as the one on decolonisation, enable us to engage with and reflect deeply on complex issues and to challenge existing assumptions. Through this process, the faculty can enhance its teaching practices and curriculum development.”

According to Prof Prinsloo, this kind of engagement is just the beginning. “The debate is but the start of the faculty’s plan to ensure that its Academic Project is decolonised. Research is currently in process to gather perceptions of staff and students on the topic. This research will drive action.”

Lukhanyo Lekeno, Economics master’s student, echoed this sentiment, calling the topic timely and essential. “We’re living in a world where there are certain standards and norms that, in most cases, exclude and marginalise people,” he said. “When we start having conversations about decoloniality, we are taking a step closer to actually dismantling certain legacies and ideologies that keep people constrained within a mindset.” Lekeno encouraged others to engage in such conversations, describing it as an ‘exchange of knowledge, systems, and perspectives’, which contributes to both personal growth and academic transformation.

Previous sessions in the series, such as the 2024 debate on socio-environmental sustainability, have prompted internal curriculum reviews, underscoring the faculty’s intention to link dialogue with institutional reflection.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept