Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2025 | Story Onthatile Tikoe | Photo Supplied
Logan James
Logan W. James, UFS alumnus and breakout star of Binnelanders Season 15, proudly waves the Kovsie flag as he steps into his first national television role.

University of the Free State (UFS) alumnus Logan W James made his national television debut in Season 15 of kykNET’s long-running medical drama, Binnelanders. Streaming on Showmax from 4 June 2025, the latest season introduces Logan in a role that delivers high drama, high energy, and a fresh wave of talent rooted in the Free State.

 

From campus to camera

Born and bred in Bloemfontein, Logan’s rise from student theatre to the small screen is a story stitched together by grit, passion, and a deep love for performance. A former learner of Grey College and a proud Kovsie, Logan honed his craft at the University of the Free State, where he quickly became known for his magnetic stage presence and commitment to his roles.

From standout performances in Everyman, How to Wuzz, and Run for Your Wife to unforgettable moments during UFS’s annual Africa Day showcases, Logan carved out a name for himself as a rising star on campus – one performance at a time.

 

A dream years in the making

Now based in Johannesburg, Logan is stepping into a new kind of spotlight. He plays Le Roux Snyman - a thrill-seeking, motocross-riding character with a bold facade and hidden depths.

“Le Roux is full of energy and contradictions,” Logan says. “He lives for extreme sports and adrenaline, but there’s a much softer, more vulnerable side he doesn’t often show. What excites me is exploring both boldness and fragility in the same breath - it’s something I’ve never quite done before.”

Though this may be Logan’s TV debut, stepping onto the Binnelanders set felt strangely familiar.

“I used to watch Binnelanders at my grandmother’s house,” he recalls. “Never in my wildest dreams did I imagine I’d one day be part of the cast. It feels like a full-circle moment - a dream realised. The journey here wasn’t straightforward, but seeing it come to life like this is an incredible blessing.”

 

The foundation of theatre

Logan credits his Bloemfontein theatre roots as the foundation of his acting journey. “Theatre taught me discipline, presence, and heart,” he says. “On stage, there are no second takes. You have to show up, fully and honestly, every time. That kind of intensity trains you not as a performer, but as a professional.

These lessons continue to shape how he approaches his work today. “Kindness and professionalism – those are the two things I carry into every production,” he adds.

 

Big city, bigger lessons

The move from Bloem’s close-knit creative community to the bustling entertainment industry in Johannesburg came with new challenges – and new lessons.

“In Joburg, you quickly realise just how much talent is out there,” Logan says. “It forced me to embrace what makes me unique, rather than compare myself to others. Real passion – not the pursuit of fame – is what carries you through the tough times. If you’re chasing the art, not the spotlight, you’ll find purpose, even when things get hard.”

 

A voice for regional talent

Logan’s journey is not just a personal triumph – it’s also a win for regional talent. As a Free State-born actor breaking into the national scene, he is part of a growing wave of creatives proving that national recognition is possible from anywhere.

“To go from student theatre to national TV is a leap that’s both terrifying and thrilling,” Logan reflects. “But it's proof that consistent hard work, staying true to your craft, and trusting the process can open doors you once only dreamed of.”

 

Ready for the spotlight

With his first episode having aired on 4 June, audiences were treated to a performance that was rich with energy and layered with emotion.

“There’s a lot of growth ahead - for Le Roux and for me,” Logan shares. “I’m looking forward to every moment of it. I can’t wait for South Africa to meet him.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept