Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 June 2025 | Story Onthatile Tikoe | Photo Supplied
Logan James
Logan W. James, UFS alumnus and breakout star of Binnelanders Season 15, proudly waves the Kovsie flag as he steps into his first national television role.

University of the Free State (UFS) alumnus Logan W James made his national television debut in Season 15 of kykNET’s long-running medical drama, Binnelanders. Streaming on Showmax from 4 June 2025, the latest season introduces Logan in a role that delivers high drama, high energy, and a fresh wave of talent rooted in the Free State.

 

From campus to camera

Born and bred in Bloemfontein, Logan’s rise from student theatre to the small screen is a story stitched together by grit, passion, and a deep love for performance. A former learner of Grey College and a proud Kovsie, Logan honed his craft at the University of the Free State, where he quickly became known for his magnetic stage presence and commitment to his roles.

From standout performances in Everyman, How to Wuzz, and Run for Your Wife to unforgettable moments during UFS’s annual Africa Day showcases, Logan carved out a name for himself as a rising star on campus – one performance at a time.

 

A dream years in the making

Now based in Johannesburg, Logan is stepping into a new kind of spotlight. He plays Le Roux Snyman - a thrill-seeking, motocross-riding character with a bold facade and hidden depths.

“Le Roux is full of energy and contradictions,” Logan says. “He lives for extreme sports and adrenaline, but there’s a much softer, more vulnerable side he doesn’t often show. What excites me is exploring both boldness and fragility in the same breath - it’s something I’ve never quite done before.”

Though this may be Logan’s TV debut, stepping onto the Binnelanders set felt strangely familiar.

“I used to watch Binnelanders at my grandmother’s house,” he recalls. “Never in my wildest dreams did I imagine I’d one day be part of the cast. It feels like a full-circle moment - a dream realised. The journey here wasn’t straightforward, but seeing it come to life like this is an incredible blessing.”

 

The foundation of theatre

Logan credits his Bloemfontein theatre roots as the foundation of his acting journey. “Theatre taught me discipline, presence, and heart,” he says. “On stage, there are no second takes. You have to show up, fully and honestly, every time. That kind of intensity trains you not as a performer, but as a professional.

These lessons continue to shape how he approaches his work today. “Kindness and professionalism – those are the two things I carry into every production,” he adds.

 

Big city, bigger lessons

The move from Bloem’s close-knit creative community to the bustling entertainment industry in Johannesburg came with new challenges – and new lessons.

“In Joburg, you quickly realise just how much talent is out there,” Logan says. “It forced me to embrace what makes me unique, rather than compare myself to others. Real passion – not the pursuit of fame – is what carries you through the tough times. If you’re chasing the art, not the spotlight, you’ll find purpose, even when things get hard.”

 

A voice for regional talent

Logan’s journey is not just a personal triumph – it’s also a win for regional talent. As a Free State-born actor breaking into the national scene, he is part of a growing wave of creatives proving that national recognition is possible from anywhere.

“To go from student theatre to national TV is a leap that’s both terrifying and thrilling,” Logan reflects. “But it's proof that consistent hard work, staying true to your craft, and trusting the process can open doors you once only dreamed of.”

 

Ready for the spotlight

With his first episode having aired on 4 June, audiences were treated to a performance that was rich with energy and layered with emotion.

“There’s a lot of growth ahead - for Le Roux and for me,” Logan shares. “I’m looking forward to every moment of it. I can’t wait for South Africa to meet him.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept