Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 June 2025 | Story Andre Damons | Photo Andre Damons
Prof Matlalepula Matsabisa
Prof Motlalepula Matsabisa, renowned African Traditional Medicine expert and pharmacology researcher from the University of the Free State (UFS) will co-chair the World Health Organisation Global Traditional Medicine Summit steering committee.

Prof Motlalepula Matsabisa, renowned African Traditional Medicine expert and pharmacology researcher from the University of the Free State (UFS) has recently been elected a co-chairperson of the World Health Organisation (WHO) Global Traditional Medicine Summit steering committee. The other co-chairperson is Dr Goh Cheng Soon from Malaysia. 

The steering committee, which is appointed for one year, will help the WHO to organise the WHO Traditional Medicines Global Summit taking place later this year in New Delhi, India. The steering committee is also an advisory body to the WHO and the Global Traditional Medicine Centre to provide reviews and recommendations for the WHO Traditional Medicine Global Summit coordination, propose summit sessions and session speakers. This committee has 15 members from South Africa, Malaysia, Saudi Arabia, Ghana, India, China, Bhutan, Germany, Brazil, Egypt, New Zealand, US, Netherlands, Switzerland and Bolivia.

Prof Matsabisa, Research Director of the African Medicines Innovations and Technologies Development (AMITD) platform at the UFS, is also the chairperson of the WHO Africa Regional Expert Advisory Committee on Traditional Medicine (REACT)

 

Responsibility of the committee 

“Once more this is an honour for me to take this task and lead a group of experts – not just from the African continent where I am currently the chairperson of the WHO Afro REACT committee, but now I chair experts from all the continents and all six WHO geographical regions – namely Africa (Afro), the Americas (AMRO), the eastern Mediterranean (EMRO), Europe (EURO), South East Asia (SEARO) and the Western Pacific (WPRO). I chair a worldwide group of experts,” says Prof Matsabisa. 

According to him, the committee will work with WHO to design the summit programme, identify summit sessions and session speakers, as well as recommend ministers to be in the round-table discussions. The committee will also be responsible for the design of the exhibitions that will showcase traditional medicine products and practices across all six WHO regions. The identification of the sessions will be around action and delivery on the priority agenda from the past 2023 WHO Global summit as well as from the deliverables of the WHO 2025-2034 Traditional Medicines strategy. 

The theme for the WHO Traditional Medicines Global Summit is “Restoring balance for people and planet. The science and practice of health and well-being”. They anticipate attracting 6 000 people, from all over, to attend the summit with at least 1 000 in-person attendees and another 5 000 online participants. 

The committee will look at the first WHO 2023 Traditional Medicines Global summit and its Gujarat Declaration where the Traditional Medicine (TM) priority agenda was set – this priority agenda included global leadership, research and evidence, universal health coverage (UHC), primary health care (PHC) health systems, data and routine information systems, biodiversity and sustainability.

 

Market the UFS 

When a call for applications to serve on the steering committee went out, Prof Matsabisa applied and was later approached by the WHO to chair the steering and advisory committee. “I see this as an opportunity to serve the WHO and use my knowledge and skills to serve the world. I felt very honoured to have been approached for such an important job and role to undertake. As a chairperson, I will guide the committee, take responsibility for the planning and implementation of the summit. I will market the summit. I shall be the direct link between the WHO in Geneva and the committee.”

Prof Matsabisa indicated that he will use the chairmanship to market and internationalise the UFS AMITD programme and give it a further global outlook. He will also find new collaborators and potential funders and investors for projects and activities of the UFS and secure activities that will help find and fund global postdoctoral fellows and visiting scholars. This will be good for the AMITD platform.

“The steering committee shall set the 2nd WHO Traditional Medicine Global Summit theme for scale up learning, collaboration and action,” says Prof Matsabisa. “Therefore, the committee will design the summit programme to address these and take themes and discussions from high-level political commitments, building on UNGA, WHA, G20, BRICS, and AU etc. Launches of the WHO Global TM Library on Traditional Medicine; WHO Bulletin special issue on Traditional Medicine; TM Innovation and Investment Initiative; Global TM Research Roadmap; Global TM Data Network; and Learnings from Indigenous Knowledge will also take place.”

Furthermore, advancements of healthy ecosystems and TM integration and encouraging indigenous people's knowledge exchange; and AI and TM governance course/ brief as well as the advancing of cross-cutting frameworks for TM-related ethics, rights, IP, equitable access and benefits are on the agenda. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept