Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story André Damons | Photo Department of Science, Technology, and Innovation
Prof Motlalepula Matsabisa
Prof Motlalepula Matsabisa, a specialist in indigenous knowledge systems from the Department of Pharmacology at the University of the Free State (UFS), and Jansie Niehaus, NSTF Executive Director and Company Director, at the Second Ministerial Belt and Road Science and Technology conference (BRT) in China.

Prof Motlalepula Matsabisa, a specialist in indigenous knowledge systems from the Department of Pharmacology at the University of the Free State (UFS), is part of a delegation with Prof Blade Nzimande, minister of Science, Technology, and Innovation (DSTI), to the Second Ministerial Belt and Road Science and Technology conference (BRT) in China. 

The conference is being held in Chengdu from 11-12 June 2025 and will gather representatives from state-level agencies, scientific academies, and innovation enterprises from countries involved in the Belt and Road Initiative, including members of the Association of Southeast Asian Nations (ASEAN) and the Shanghai Cooperation Organisation. The theme of the conference is “Together for Innovation, Development for All – Jointly Building a Scientific and Technological Innovation Community for the Belt and Road”. 

Prof Matsabisa, Research Director of the African Medicines Innovations and Technologies Development at the UFS, is the only person from a South African university to be invited by Prof Nzimande as part of this ministerial trip. Other members of the delegation include members from the minister’s department, CEOs and board members of agencies that report to the DSTI – namely Technology Innovation Agency (TIA), the National Science and Technology Forum (NSTF), Council for Scientific and Industrial Research (CSIR), National Advisory Council on Innovation, Human Sciences Research Council of South Africa, South African Council for Natural Scientific Professions, National Science and Technology Forum (NSTF), National Advisory Council on Innovation (NACI), South African National Space Agency and the National Research Foundation (NRF). 

As a guest professor at the Beijing University of Chinese Medicine (BUCM) in Beijing, Prof Matsabisa accompanied the delegation on a visit to the university where he has a longstanding relationship. The UFS has the only active university collaboration within the China-South African Science and Technology bilateral agreement.

 

Supporting around aspects of traditional medicine 

According to a statement on the South African government website, Prof Nzimande expressed the department’s intention to strengthen collaboration with the Beijing University and the Aerospace Research Institute of the Chinese Academy of Sciences, in the areas of indigenous knowledge systems and space science, respectively. The minister visited both the BUCM and the Aerospace Information Research Institute of the Chinese Academy of Sciences this week. 

“It is an honour to be part of the minister’s delegation given that I am the only person from a university amongst the agencies. The UFS is indeed very honoured to have been the only one identified to be in this ministerial trip. I am honoured to make connections with the decision-makers such as the chairperson of the board of TIA and the CEO of NSTF and all the other CEOs. It’s indeed an honour to share our work with people from NACI and the minister’s office at DSTI. This really could not have been a better opportune moment for me,” says Prof Matsabisa. 

According to him, he is there to support Prof Nzimande around aspects of traditional medicine as well as with his meeting with the Chinese Minister of Science and Technology during the signing of a letter of intent on traditional medicines including in the BRT conference where the minister will give a talk that will cover traditional medicines. Prof Matsabisa says he is looking forward to strengthening the relationships between the UFS and BUCM and China as well as sharing with the minister the joint projects and joint students from both institutions, hoping for continued support and funding.

“This trip has opened new opportunities. TIA has invited me and the UFS to be part of their new project on neurodegenerative diseases with Cuba. It was wonderful to hear that both the CEO and the chairperson of the board had already been briefed about me to be part of the project.

“It is also great to be present at the signing of the letter of intent on traditional medicine as it is important to know where the policies are heading.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept