Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story André Damons | Photo Department of Science, Technology, and Innovation
Prof Motlalepula Matsabisa
Prof Motlalepula Matsabisa, a specialist in indigenous knowledge systems from the Department of Pharmacology at the University of the Free State (UFS), and Jansie Niehaus, NSTF Executive Director and Company Director, at the Second Ministerial Belt and Road Science and Technology conference (BRT) in China.

Prof Motlalepula Matsabisa, a specialist in indigenous knowledge systems from the Department of Pharmacology at the University of the Free State (UFS), is part of a delegation with Prof Blade Nzimande, minister of Science, Technology, and Innovation (DSTI), to the Second Ministerial Belt and Road Science and Technology conference (BRT) in China. 

The conference is being held in Chengdu from 11-12 June 2025 and will gather representatives from state-level agencies, scientific academies, and innovation enterprises from countries involved in the Belt and Road Initiative, including members of the Association of Southeast Asian Nations (ASEAN) and the Shanghai Cooperation Organisation. The theme of the conference is “Together for Innovation, Development for All – Jointly Building a Scientific and Technological Innovation Community for the Belt and Road”. 

Prof Matsabisa, Research Director of the African Medicines Innovations and Technologies Development at the UFS, is the only person from a South African university to be invited by Prof Nzimande as part of this ministerial trip. Other members of the delegation include members from the minister’s department, CEOs and board members of agencies that report to the DSTI – namely Technology Innovation Agency (TIA), the National Science and Technology Forum (NSTF), Council for Scientific and Industrial Research (CSIR), National Advisory Council on Innovation, Human Sciences Research Council of South Africa, South African Council for Natural Scientific Professions, National Science and Technology Forum (NSTF), National Advisory Council on Innovation (NACI), South African National Space Agency and the National Research Foundation (NRF). 

As a guest professor at the Beijing University of Chinese Medicine (BUCM) in Beijing, Prof Matsabisa accompanied the delegation on a visit to the university where he has a longstanding relationship. The UFS has the only active university collaboration within the China-South African Science and Technology bilateral agreement.

 

Supporting around aspects of traditional medicine 

According to a statement on the South African government website, Prof Nzimande expressed the department’s intention to strengthen collaboration with the Beijing University and the Aerospace Research Institute of the Chinese Academy of Sciences, in the areas of indigenous knowledge systems and space science, respectively. The minister visited both the BUCM and the Aerospace Information Research Institute of the Chinese Academy of Sciences this week. 

“It is an honour to be part of the minister’s delegation given that I am the only person from a university amongst the agencies. The UFS is indeed very honoured to have been the only one identified to be in this ministerial trip. I am honoured to make connections with the decision-makers such as the chairperson of the board of TIA and the CEO of NSTF and all the other CEOs. It’s indeed an honour to share our work with people from NACI and the minister’s office at DSTI. This really could not have been a better opportune moment for me,” says Prof Matsabisa. 

According to him, he is there to support Prof Nzimande around aspects of traditional medicine as well as with his meeting with the Chinese Minister of Science and Technology during the signing of a letter of intent on traditional medicines including in the BRT conference where the minister will give a talk that will cover traditional medicines. Prof Matsabisa says he is looking forward to strengthening the relationships between the UFS and BUCM and China as well as sharing with the minister the joint projects and joint students from both institutions, hoping for continued support and funding.

“This trip has opened new opportunities. TIA has invited me and the UFS to be part of their new project on neurodegenerative diseases with Cuba. It was wonderful to hear that both the CEO and the chairperson of the board had already been briefed about me to be part of the project.

“It is also great to be present at the signing of the letter of intent on traditional medicine as it is important to know where the policies are heading.”

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept