Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 June 2025 | Story André Damons | Photo Department of Science, Technology, and Innovation
Prof Motlalepula Matsabisa
Prof Motlalepula Matsabisa, a specialist in indigenous knowledge systems from the Department of Pharmacology at the University of the Free State (UFS), and Jansie Niehaus, NSTF Executive Director and Company Director, at the Second Ministerial Belt and Road Science and Technology conference (BRT) in China.

Prof Motlalepula Matsabisa, a specialist in indigenous knowledge systems from the Department of Pharmacology at the University of the Free State (UFS), is part of a delegation with Prof Blade Nzimande, minister of Science, Technology, and Innovation (DSTI), to the Second Ministerial Belt and Road Science and Technology conference (BRT) in China. 

The conference is being held in Chengdu from 11-12 June 2025 and will gather representatives from state-level agencies, scientific academies, and innovation enterprises from countries involved in the Belt and Road Initiative, including members of the Association of Southeast Asian Nations (ASEAN) and the Shanghai Cooperation Organisation. The theme of the conference is “Together for Innovation, Development for All – Jointly Building a Scientific and Technological Innovation Community for the Belt and Road”. 

Prof Matsabisa, Research Director of the African Medicines Innovations and Technologies Development at the UFS, is the only person from a South African university to be invited by Prof Nzimande as part of this ministerial trip. Other members of the delegation include members from the minister’s department, CEOs and board members of agencies that report to the DSTI – namely Technology Innovation Agency (TIA), the National Science and Technology Forum (NSTF), Council for Scientific and Industrial Research (CSIR), National Advisory Council on Innovation, Human Sciences Research Council of South Africa, South African Council for Natural Scientific Professions, National Science and Technology Forum (NSTF), National Advisory Council on Innovation (NACI), South African National Space Agency and the National Research Foundation (NRF). 

As a guest professor at the Beijing University of Chinese Medicine (BUCM) in Beijing, Prof Matsabisa accompanied the delegation on a visit to the university where he has a longstanding relationship. The UFS has the only active university collaboration within the China-South African Science and Technology bilateral agreement.

 

Supporting around aspects of traditional medicine 

According to a statement on the South African government website, Prof Nzimande expressed the department’s intention to strengthen collaboration with the Beijing University and the Aerospace Research Institute of the Chinese Academy of Sciences, in the areas of indigenous knowledge systems and space science, respectively. The minister visited both the BUCM and the Aerospace Information Research Institute of the Chinese Academy of Sciences this week. 

“It is an honour to be part of the minister’s delegation given that I am the only person from a university amongst the agencies. The UFS is indeed very honoured to have been the only one identified to be in this ministerial trip. I am honoured to make connections with the decision-makers such as the chairperson of the board of TIA and the CEO of NSTF and all the other CEOs. It’s indeed an honour to share our work with people from NACI and the minister’s office at DSTI. This really could not have been a better opportune moment for me,” says Prof Matsabisa. 

According to him, he is there to support Prof Nzimande around aspects of traditional medicine as well as with his meeting with the Chinese Minister of Science and Technology during the signing of a letter of intent on traditional medicines including in the BRT conference where the minister will give a talk that will cover traditional medicines. Prof Matsabisa says he is looking forward to strengthening the relationships between the UFS and BUCM and China as well as sharing with the minister the joint projects and joint students from both institutions, hoping for continued support and funding.

“This trip has opened new opportunities. TIA has invited me and the UFS to be part of their new project on neurodegenerative diseases with Cuba. It was wonderful to hear that both the CEO and the chairperson of the board had already been briefed about me to be part of the project.

“It is also great to be present at the signing of the letter of intent on traditional medicine as it is important to know where the policies are heading.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept