Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2025 | Story Leonie Bolleurs | Photo Supplied
SASUF
SASUF student members join Kovsie ACT in maintaining food garden beds on the Bloemfontein Campus.

There is something powerful about getting your hands in the soil, even more so when it is to help someone else. That is exactly what the group of South Africa–Sweden University Forum (SASUF) students did at the end of May, marking World Hunger Day by joining forces with Kovsie ACT to maintain and prepare food garden beds on the University of the Free State (UFS) Bloemfontein Campus.

The SASUF student team is helping with the upkeep of 40 vegetable beds in the food tunnels near Welwitschia Residence. These beds were established to supply fresh produce to students in need – a small effort with a big purpose.

Simba Matema, Research Assistant from the Office for International Affairs and SASUF Student Network National Coordinator, says this project is about more than planting vegetables. “We want to make sure that students who are struggling financially can benefit. But we also want to learn, to grow skills in agriculture and sustainability,” he explains.

 

A learning experience with real impact

Second-year student Lesego Moeleso says being involved in the garden is “a refreshing change of scenery” and a great way to “interact with students from different fields of study”. He adds: “We all want to help our fellow students who don’t have enough food.” 

Third-year UFS student Njabulo Sibeko agrees. “It’s a unique mix of academic enrichment, personal growth, and community engagement,” he says. “Even if the impact is small, it goes a long way. This project gives us a chance for hands-on learning and skills development, environmental sustainability and awareness, as well as social connections.”

Sibeko believes the garden also works as a “live experiment for environmental education”, teaching about “composting, water conservation, and organic farming”. He says, “Different vegetables have different nutrition, and if we can hold small workshops as to why we need to eat specific vegetables during different seasons, it will help teach us about the value they have for our body.”

Final-year Law student Shemsa Nzeyimana says her favourite part of being involved is “seeing the impact of our efforts” and “watching the garden grow and flourish”. “I love being part of a team that shares a common vision for creating positive change through sustainable practices,” she says. “And the fact that I get to be out of my comfort zone while building my social skills.”

 

Towards a sustainable solution

Nzeyimana hopes the garden “will become a hub for community engagement”, connecting students, staff, and locals while promoting sustainable food systems. “The garden directly addresses food security while also serving as a hands-on learning space for nutritional education and sustainable agriculture,” she adds. “By promoting sustainable gardening practices, the garden raises environmental awareness and encourages the campus community to think critically about food systems and their impact.”

At the UFS, where 59% of students report going hungry and 60% skip meals for financial reasons, the need is undeniable. Matema says by “giving students a role in the solution”, the stigma around food aid is reduced. “It becomes a shared project, not a handout.”

As Nzeyimana sums it up: “This garden can become a space for learning, connection, and hope – a place where change grows from the ground up.”

Besides Kovsie ACT, the initiative includes partners such as the Institute for Groundwater Studies, University Estates, the UFS Food Environment Office, and residences. External partners such as Tiger Brands, Sakata Seeds, and Kwaggafontein Nursery also support the project.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept