Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2025 | Story Leonie Bolleurs | Photo Supplied
SASUF
SASUF student members join Kovsie ACT in maintaining food garden beds on the Bloemfontein Campus.

There is something powerful about getting your hands in the soil, even more so when it is to help someone else. That is exactly what the group of South Africa–Sweden University Forum (SASUF) students did at the end of May, marking World Hunger Day by joining forces with Kovsie ACT to maintain and prepare food garden beds on the University of the Free State (UFS) Bloemfontein Campus.

The SASUF student team is helping with the upkeep of 40 vegetable beds in the food tunnels near Welwitschia Residence. These beds were established to supply fresh produce to students in need – a small effort with a big purpose.

Simba Matema, Research Assistant from the Office for International Affairs and SASUF Student Network National Coordinator, says this project is about more than planting vegetables. “We want to make sure that students who are struggling financially can benefit. But we also want to learn, to grow skills in agriculture and sustainability,” he explains.

 

A learning experience with real impact

Second-year student Lesego Moeleso says being involved in the garden is “a refreshing change of scenery” and a great way to “interact with students from different fields of study”. He adds: “We all want to help our fellow students who don’t have enough food.” 

Third-year UFS student Njabulo Sibeko agrees. “It’s a unique mix of academic enrichment, personal growth, and community engagement,” he says. “Even if the impact is small, it goes a long way. This project gives us a chance for hands-on learning and skills development, environmental sustainability and awareness, as well as social connections.”

Sibeko believes the garden also works as a “live experiment for environmental education”, teaching about “composting, water conservation, and organic farming”. He says, “Different vegetables have different nutrition, and if we can hold small workshops as to why we need to eat specific vegetables during different seasons, it will help teach us about the value they have for our body.”

Final-year Law student Shemsa Nzeyimana says her favourite part of being involved is “seeing the impact of our efforts” and “watching the garden grow and flourish”. “I love being part of a team that shares a common vision for creating positive change through sustainable practices,” she says. “And the fact that I get to be out of my comfort zone while building my social skills.”

 

Towards a sustainable solution

Nzeyimana hopes the garden “will become a hub for community engagement”, connecting students, staff, and locals while promoting sustainable food systems. “The garden directly addresses food security while also serving as a hands-on learning space for nutritional education and sustainable agriculture,” she adds. “By promoting sustainable gardening practices, the garden raises environmental awareness and encourages the campus community to think critically about food systems and their impact.”

At the UFS, where 59% of students report going hungry and 60% skip meals for financial reasons, the need is undeniable. Matema says by “giving students a role in the solution”, the stigma around food aid is reduced. “It becomes a shared project, not a handout.”

As Nzeyimana sums it up: “This garden can become a space for learning, connection, and hope – a place where change grows from the ground up.”

Besides Kovsie ACT, the initiative includes partners such as the Institute for Groundwater Studies, University Estates, the UFS Food Environment Office, and residences. External partners such as Tiger Brands, Sakata Seeds, and Kwaggafontein Nursery also support the project.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept