Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2025 | Story Leonie Bolleurs | Photo Supplied
SASUF
SASUF student members join Kovsie ACT in maintaining food garden beds on the Bloemfontein Campus.

There is something powerful about getting your hands in the soil, even more so when it is to help someone else. That is exactly what the group of South Africa–Sweden University Forum (SASUF) students did at the end of May, marking World Hunger Day by joining forces with Kovsie ACT to maintain and prepare food garden beds on the University of the Free State (UFS) Bloemfontein Campus.

The SASUF student team is helping with the upkeep of 40 vegetable beds in the food tunnels near Welwitschia Residence. These beds were established to supply fresh produce to students in need – a small effort with a big purpose.

Simba Matema, Research Assistant from the Office for International Affairs and SASUF Student Network National Coordinator, says this project is about more than planting vegetables. “We want to make sure that students who are struggling financially can benefit. But we also want to learn, to grow skills in agriculture and sustainability,” he explains.

 

A learning experience with real impact

Second-year student Lesego Moeleso says being involved in the garden is “a refreshing change of scenery” and a great way to “interact with students from different fields of study”. He adds: “We all want to help our fellow students who don’t have enough food.” 

Third-year UFS student Njabulo Sibeko agrees. “It’s a unique mix of academic enrichment, personal growth, and community engagement,” he says. “Even if the impact is small, it goes a long way. This project gives us a chance for hands-on learning and skills development, environmental sustainability and awareness, as well as social connections.”

Sibeko believes the garden also works as a “live experiment for environmental education”, teaching about “composting, water conservation, and organic farming”. He says, “Different vegetables have different nutrition, and if we can hold small workshops as to why we need to eat specific vegetables during different seasons, it will help teach us about the value they have for our body.”

Final-year Law student Shemsa Nzeyimana says her favourite part of being involved is “seeing the impact of our efforts” and “watching the garden grow and flourish”. “I love being part of a team that shares a common vision for creating positive change through sustainable practices,” she says. “And the fact that I get to be out of my comfort zone while building my social skills.”

 

Towards a sustainable solution

Nzeyimana hopes the garden “will become a hub for community engagement”, connecting students, staff, and locals while promoting sustainable food systems. “The garden directly addresses food security while also serving as a hands-on learning space for nutritional education and sustainable agriculture,” she adds. “By promoting sustainable gardening practices, the garden raises environmental awareness and encourages the campus community to think critically about food systems and their impact.”

At the UFS, where 59% of students report going hungry and 60% skip meals for financial reasons, the need is undeniable. Matema says by “giving students a role in the solution”, the stigma around food aid is reduced. “It becomes a shared project, not a handout.”

As Nzeyimana sums it up: “This garden can become a space for learning, connection, and hope – a place where change grows from the ground up.”

Besides Kovsie ACT, the initiative includes partners such as the Institute for Groundwater Studies, University Estates, the UFS Food Environment Office, and residences. External partners such as Tiger Brands, Sakata Seeds, and Kwaggafontein Nursery also support the project.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept