Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 June 2025 | Story Leonie Bolleurs | Photo Supplied
SASUF
SASUF student members join Kovsie ACT in maintaining food garden beds on the Bloemfontein Campus.

There is something powerful about getting your hands in the soil, even more so when it is to help someone else. That is exactly what the group of South Africa–Sweden University Forum (SASUF) students did at the end of May, marking World Hunger Day by joining forces with Kovsie ACT to maintain and prepare food garden beds on the University of the Free State (UFS) Bloemfontein Campus.

The SASUF student team is helping with the upkeep of 40 vegetable beds in the food tunnels near Welwitschia Residence. These beds were established to supply fresh produce to students in need – a small effort with a big purpose.

Simba Matema, Research Assistant from the Office for International Affairs and SASUF Student Network National Coordinator, says this project is about more than planting vegetables. “We want to make sure that students who are struggling financially can benefit. But we also want to learn, to grow skills in agriculture and sustainability,” he explains.

 

A learning experience with real impact

Second-year student Lesego Moeleso says being involved in the garden is “a refreshing change of scenery” and a great way to “interact with students from different fields of study”. He adds: “We all want to help our fellow students who don’t have enough food.” 

Third-year UFS student Njabulo Sibeko agrees. “It’s a unique mix of academic enrichment, personal growth, and community engagement,” he says. “Even if the impact is small, it goes a long way. This project gives us a chance for hands-on learning and skills development, environmental sustainability and awareness, as well as social connections.”

Sibeko believes the garden also works as a “live experiment for environmental education”, teaching about “composting, water conservation, and organic farming”. He says, “Different vegetables have different nutrition, and if we can hold small workshops as to why we need to eat specific vegetables during different seasons, it will help teach us about the value they have for our body.”

Final-year Law student Shemsa Nzeyimana says her favourite part of being involved is “seeing the impact of our efforts” and “watching the garden grow and flourish”. “I love being part of a team that shares a common vision for creating positive change through sustainable practices,” she says. “And the fact that I get to be out of my comfort zone while building my social skills.”

 

Towards a sustainable solution

Nzeyimana hopes the garden “will become a hub for community engagement”, connecting students, staff, and locals while promoting sustainable food systems. “The garden directly addresses food security while also serving as a hands-on learning space for nutritional education and sustainable agriculture,” she adds. “By promoting sustainable gardening practices, the garden raises environmental awareness and encourages the campus community to think critically about food systems and their impact.”

At the UFS, where 59% of students report going hungry and 60% skip meals for financial reasons, the need is undeniable. Matema says by “giving students a role in the solution”, the stigma around food aid is reduced. “It becomes a shared project, not a handout.”

As Nzeyimana sums it up: “This garden can become a space for learning, connection, and hope – a place where change grows from the ground up.”

Besides Kovsie ACT, the initiative includes partners such as the Institute for Groundwater Studies, University Estates, the UFS Food Environment Office, and residences. External partners such as Tiger Brands, Sakata Seeds, and Kwaggafontein Nursery also support the project.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept