Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
02 June 2025 | Story Leonie Bolleurs | Photo Supplied
Dr Lucia Meko
Dr Lucia Meko believes that face-to-face engagement helps students become more empathetic, culturally aware health professionals.

In South Africa, the streets often tell stories of contrasts where wealth and poverty, tradition and modernity, and diverse cultures meet at the same intersection. It is a place where neighbours may speak different languages, worship in different ways, and sit down to very different meals. These everyday differences do not just influence how people live – they shape what ends up on their plates.

According to Dr Lucia Meko, Senior Lecturer and Head of the Department of Nutrition and Dietetics at the University of the Free State (UFS), dietitians play an important role in such a diverse landscape. “Their mission is to empower individuals and communities to make informed, healthy food choices that support long-term well-being. According to the Health Professions Council of South Africa (HPCSA), dietitians are trained to provide personalised nutrition counselling aimed at preventing and managing diet-related diseases,” she says.

“This means that whether someone is dealing with diabetes, high blood pressure, or simply trying to improve their eating habits, a dietitian can offer guidance tailored to their unique needs and circumstances.”

However, Dr Meko believes that while theory is important, many students only truly understand the reality of their future clients when they experience it first-hand. At the UFS, students do not have to wait until the end of their degrees to gain this insight. Community service learning begins in their very first year.

This approach immerses students in the communities they will eventually serve, offering a practical education that goes beyond textbooks. By working directly with communities, students gain a deeper appreciation of the challenges individuals face in making healthy food choices,” she says.

“These experiences help shape well-rounded professionals who are not only knowledgeable but also empathetic and culturally aware,” adds Dr Meko.

Unlike traditional volunteering, this is structured learning with clear outcomes. Students apply classroom theory to real-world issues while simultaneously giving back. Through this process, students develop critical thinking, cultural competence, and the ability to communicate health information in ways that are relevant and respectful,” she explains.

 

What really happens on the ground

To understand what this looks like in practice, Dr Meko points to a research study conducted by the department. It examines the experiences of fourth-year students during a Community Nutrition Module internship. This internship is one of eight work-integrated learning (WIL) components in the module.

In this particular placement, students work in Ward 51 in Mangaung, visiting homes and engaging directly with residents. During each visit, they profile the community member’s demographics, measure nutritional status (using weight and height), and assess dietary patterns. Afterward, they offer tailored dietary counselling.

Beyond individual visits, students also explore the broader food environment: visiting supermarkets, vegetable gardens, early childhood centres, and street vendors all form part of their learning.

Importantly, this programme is not one-sided. Feedback from both students and community members is gathered to improve the experience and assess its impact.

So far, early findings are promising. Students not only learned; they were transformed. Interestingly, students mostly showed appreciation for their own privileges in comparison to the disadvantaged communities they visited,” says Dr Meko. One student reflected: “It humbled me and made me very grateful for all that I have, because I think we really lose sight of that sometimes.”

After a township tour, another student admitted: This was very insightful, as we often have stereotypes about the way people live and what people eat, simply because of where they live.”

In a cooking activity, students were challenged to apply dietary guidelines in real kitchens. The outcome? A deeper understanding of the barriers faced by many. “Dietetic guidelines we have given to some patients were really put into perspective, as cooking with less salt is not as easy as we think,” says Dr Meko, quoting student feedback.

Some even used what they learned in other placements. One student took a simple grocery list she developed during her internship to the hospital setting: “It is the most practical way to influence someone to shop differently.”

Others were inspired to continue working in food access. “I was impressed with the size of the vegetable gardens and was also inspired to be part of projects like these in the future,” shared another student.

Perhaps one of the most powerful observations came from a student who said: “I feel empowered but also sad to see that this is how most of the country is living and that we can make a difference, no matter how small.”

 

A lasting impact for both student and community

For Dr Meko, this is exactly what service learning should achieve. “While lectures and textbooks can teach the theory behind intercultural competence, it’s the face-to-face interactions – listening to people’s stories, understanding their struggles, and working alongside them – that truly bring those lessons to life.”

She adds that this kind of learning also builds stronger, more respectful relationships between the university and the communities it serves. “It fosters partnerships built on mutual respect, shared goals, and the exchange of knowledge and resources – locally and beyond.”

Community service learning is not just a tick-box exercise. In the UFS Department of Nutrition and Dietetics, it is a meaningful bridge between knowledge and empathy, between theory and reality, and – most importantly – between future dietitians and the people whose lives they hope to improve.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept