Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Tshepo Tsotetsi | Photo Supplied
Dr Herkulaas Combrink
Dr Herkulaas Combrink is representing UFS in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Herkulaas Combrink, a senior lecturer in the Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS), is representing the university in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Combrink, who is also a co-director of the Interdisciplinary Centre for Digital Futures (ICDF), has been selected as one of the principal investigators in a newly funded project supported by the UK’s International Science Partnerships Fund under the Evidence-Informed Policymaking Programme. Running from April 2025 to March 2026, the project – titled Integrating Evidence for Contextualised Public Health Policy: Lessons from South Africa – explores how different types of evidence can be used more effectively in shaping public health policy. The international collaboration includes researchers from the Centre for Philosophy of Epidemiology, Medicine and Public Health, which is a collaboration between Durham University and the University of Johannesburg; as well as Durham’s Centre for Humanities Engaging Science and Society.

 

From the Free State to global impact

For Dr Combrink, being part of this collaboration highlights the important work being done in the faculty and ICDF that is reaching beyond borders. 

“It’s important to showcase the impact we are making from the Free State that leads to global outcomes,” he said.

The project aims to evaluate an evidence mapping framework to determine how model-based projections and social listening reports can be more effectively integrated and contextualised for policymaking.

“These are two very different data types,” he explained. “The value lies in demonstrating how to apply the framework to different contexts for evidence-based mapping.”

Dr Combrink brings extensive expertise to the team, having worked on both disease modelling and risk communication during South Africa’s COVID-19 response. He was involved in national and provincial social listening initiatives, and used high-frequency social media data to track the spread of misinformation, often referred to as the ‘infodemic.’ 

“We’ve built up enough data within ICDF and EMS to support this study,” he noted.

The goal is not just theoretical. A key outcome of the project is engaging directly with policymakers to refine modelling and risk communication strategies for future pandemics. 

“This will help us to engage with the various departments of health to assist with improving modelling and risk communication work for better social behavioural change,” he explained.

According to Prof Brownhilder Neneh, Vice-Dean for Research and Internationalisation in the EMS faculty, the project reflects the faculty’s growing global presence. 

“Dr Combrink’s participation is a testament to the calibre of scholarship within the faculty,” she said. “It positions EMS as a key contributor to shaping policy and practice with societal impact.”

She added that the collaboration aligns well with the faculty’s vision for global partnerships that are rooted in local relevance.

“By focusing on contextualised evidence for policymaking, this project reflects our commitment to relevance, engagement and global partnership,” she said.

 

What comes next

Over the project’s 12-month timeline, the team will deliver:

• a case study analysis of modelling and social listening during South Africa’s COVID-19 response;
• an extended evidence mapping framework tailored to diverse evidence types;
• policy briefs and practical tools for public health practitioners; and
• a hybrid international workshop in late 2025 bringing together researchers, policymakers and health professionals to test and refine these outputs.

News Archive

Project aims to boost science pass rate
2009-01-19

 
Attending the launch of the HP grant of about R1 million to the UFS are, from the left: Mr Leon Erasmus, Country Manager for HP Technology Services in South Africa, Prof. Teuns Verschoor, Acting Rector of the UFS, and Mr Cobus van Breda, researcher at the UFS's Centre for Education Development and manager of the project.
Photo: Lacea Loader
The University of the Free State (UFS), in partnership with computer giant Hewlett Packard (HP), wants to boost the pass rate of its science students by using mobile technology.

The UFS is one of only 15 universities across Europe, the Middle East and Africa and the only university in South Africa to receive a grant from HP to promote mobile technology for teaching in higher education valued at USD$ 100,000 (or about R1 million). Altogether 80 universities from 28 countries applied for the grant.

“Last year HP invited a number of selected universities to submit proposals in which they had to explain how they are going to utilise mobile technologies in the redesign of a course that is presented at the university. The proposal of the Centre for Education Development (CED) at the UFS entitled “Understanding Physics through data logging” was accepted,” says Mr Cobus van Breda, researcher at CED and manager of the project.

According to Mr van Breda, students who do not meet the entrance requirements for the three-year B.Sc. programme have to enroll for the four-year curriculum with the first year actually preparing them for the three-year curriculum.

In order to increase the success rate of these students, the project envisages to enhance their understanding of science principles by utilising the advantages of personal computer (PC) tablet technology and other information and communication technologies (ICT) to support effective teaching and learning methodology.

“By using PC tablet technology in collaboration with data-logging software, a personal response system, the internet and other interactive ICT applications, an environment different from a traditional teaching milieu is created. This will consequently result in a different approach to addressing students’ learning issues,” says Mr van Breda.

The pilot project was launched during the fourth term of 2008 when 130 first-year B.Sc. students (of the four-year curriculum) did the practical component of the physics section of the Concepts in General Science (CGS) module by conducting experiments in a computerised laboratory, using data-logging software amongst other technology applications. “The pilot project delivered good results and students found the interactive application very helpful,” says Mr van Breda.

”The unique feature of the latter is the fact that real-life data can be collected with electronic sensors and instantly presented as computer graphs. It can then be analysed and interpreted immediately, thus more time can be devoted to actual Science principles and phenomena and less time on time-consuming data processing,” says Mr van Breda.

The CGS module can be seen as a prerequisite for further studies in physics at university level and in this regard it is of essence to keep looking for new models of learning and teaching which can result in student success. This year the theoretical and practical component of the physics section of the CGS programme will be done in an integrated manner.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 January 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept