Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Tshepo Tsotetsi | Photo Supplied
Dr Herkulaas Combrink
Dr Herkulaas Combrink is representing UFS in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Herkulaas Combrink, a senior lecturer in the Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS), is representing the university in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Combrink, who is also a co-director of the Interdisciplinary Centre for Digital Futures (ICDF), has been selected as one of the principal investigators in a newly funded project supported by the UK’s International Science Partnerships Fund under the Evidence-Informed Policymaking Programme. Running from April 2025 to March 2026, the project – titled Integrating Evidence for Contextualised Public Health Policy: Lessons from South Africa – explores how different types of evidence can be used more effectively in shaping public health policy. The international collaboration includes researchers from the Centre for Philosophy of Epidemiology, Medicine and Public Health, which is a collaboration between Durham University and the University of Johannesburg; as well as Durham’s Centre for Humanities Engaging Science and Society.

 

From the Free State to global impact

For Dr Combrink, being part of this collaboration highlights the important work being done in the faculty and ICDF that is reaching beyond borders. 

“It’s important to showcase the impact we are making from the Free State that leads to global outcomes,” he said.

The project aims to evaluate an evidence mapping framework to determine how model-based projections and social listening reports can be more effectively integrated and contextualised for policymaking.

“These are two very different data types,” he explained. “The value lies in demonstrating how to apply the framework to different contexts for evidence-based mapping.”

Dr Combrink brings extensive expertise to the team, having worked on both disease modelling and risk communication during South Africa’s COVID-19 response. He was involved in national and provincial social listening initiatives, and used high-frequency social media data to track the spread of misinformation, often referred to as the ‘infodemic.’ 

“We’ve built up enough data within ICDF and EMS to support this study,” he noted.

The goal is not just theoretical. A key outcome of the project is engaging directly with policymakers to refine modelling and risk communication strategies for future pandemics. 

“This will help us to engage with the various departments of health to assist with improving modelling and risk communication work for better social behavioural change,” he explained.

According to Prof Brownhilder Neneh, Vice-Dean for Research and Internationalisation in the EMS faculty, the project reflects the faculty’s growing global presence. 

“Dr Combrink’s participation is a testament to the calibre of scholarship within the faculty,” she said. “It positions EMS as a key contributor to shaping policy and practice with societal impact.”

She added that the collaboration aligns well with the faculty’s vision for global partnerships that are rooted in local relevance.

“By focusing on contextualised evidence for policymaking, this project reflects our commitment to relevance, engagement and global partnership,” she said.

 

What comes next

Over the project’s 12-month timeline, the team will deliver:

• a case study analysis of modelling and social listening during South Africa’s COVID-19 response;
• an extended evidence mapping framework tailored to diverse evidence types;
• policy briefs and practical tools for public health practitioners; and
• a hybrid international workshop in late 2025 bringing together researchers, policymakers and health professionals to test and refine these outputs.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept