Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Tshepo Tsotetsi | Photo Supplied
Dr Herkulaas Combrink
Dr Herkulaas Combrink is representing UFS in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Herkulaas Combrink, a senior lecturer in the Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS), is representing the university in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Combrink, who is also a co-director of the Interdisciplinary Centre for Digital Futures (ICDF), has been selected as one of the principal investigators in a newly funded project supported by the UK’s International Science Partnerships Fund under the Evidence-Informed Policymaking Programme. Running from April 2025 to March 2026, the project – titled Integrating Evidence for Contextualised Public Health Policy: Lessons from South Africa – explores how different types of evidence can be used more effectively in shaping public health policy. The international collaboration includes researchers from the Centre for Philosophy of Epidemiology, Medicine and Public Health, which is a collaboration between Durham University and the University of Johannesburg; as well as Durham’s Centre for Humanities Engaging Science and Society.

 

From the Free State to global impact

For Dr Combrink, being part of this collaboration highlights the important work being done in the faculty and ICDF that is reaching beyond borders. 

“It’s important to showcase the impact we are making from the Free State that leads to global outcomes,” he said.

The project aims to evaluate an evidence mapping framework to determine how model-based projections and social listening reports can be more effectively integrated and contextualised for policymaking.

“These are two very different data types,” he explained. “The value lies in demonstrating how to apply the framework to different contexts for evidence-based mapping.”

Dr Combrink brings extensive expertise to the team, having worked on both disease modelling and risk communication during South Africa’s COVID-19 response. He was involved in national and provincial social listening initiatives, and used high-frequency social media data to track the spread of misinformation, often referred to as the ‘infodemic.’ 

“We’ve built up enough data within ICDF and EMS to support this study,” he noted.

The goal is not just theoretical. A key outcome of the project is engaging directly with policymakers to refine modelling and risk communication strategies for future pandemics. 

“This will help us to engage with the various departments of health to assist with improving modelling and risk communication work for better social behavioural change,” he explained.

According to Prof Brownhilder Neneh, Vice-Dean for Research and Internationalisation in the EMS faculty, the project reflects the faculty’s growing global presence. 

“Dr Combrink’s participation is a testament to the calibre of scholarship within the faculty,” she said. “It positions EMS as a key contributor to shaping policy and practice with societal impact.”

She added that the collaboration aligns well with the faculty’s vision for global partnerships that are rooted in local relevance.

“By focusing on contextualised evidence for policymaking, this project reflects our commitment to relevance, engagement and global partnership,” she said.

 

What comes next

Over the project’s 12-month timeline, the team will deliver:

• a case study analysis of modelling and social listening during South Africa’s COVID-19 response;
• an extended evidence mapping framework tailored to diverse evidence types;
• policy briefs and practical tools for public health practitioners; and
• a hybrid international workshop in late 2025 bringing together researchers, policymakers and health professionals to test and refine these outputs.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept