Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Tshepo Tsotetsi | Photo Supplied
Dr Herkulaas Combrink
Dr Herkulaas Combrink is representing UFS in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Herkulaas Combrink, a senior lecturer in the Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS), is representing the university in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Combrink, who is also a co-director of the Interdisciplinary Centre for Digital Futures (ICDF), has been selected as one of the principal investigators in a newly funded project supported by the UK’s International Science Partnerships Fund under the Evidence-Informed Policymaking Programme. Running from April 2025 to March 2026, the project – titled Integrating Evidence for Contextualised Public Health Policy: Lessons from South Africa – explores how different types of evidence can be used more effectively in shaping public health policy. The international collaboration includes researchers from the Centre for Philosophy of Epidemiology, Medicine and Public Health, which is a collaboration between Durham University and the University of Johannesburg; as well as Durham’s Centre for Humanities Engaging Science and Society.

 

From the Free State to global impact

For Dr Combrink, being part of this collaboration highlights the important work being done in the faculty and ICDF that is reaching beyond borders. 

“It’s important to showcase the impact we are making from the Free State that leads to global outcomes,” he said.

The project aims to evaluate an evidence mapping framework to determine how model-based projections and social listening reports can be more effectively integrated and contextualised for policymaking.

“These are two very different data types,” he explained. “The value lies in demonstrating how to apply the framework to different contexts for evidence-based mapping.”

Dr Combrink brings extensive expertise to the team, having worked on both disease modelling and risk communication during South Africa’s COVID-19 response. He was involved in national and provincial social listening initiatives, and used high-frequency social media data to track the spread of misinformation, often referred to as the ‘infodemic.’ 

“We’ve built up enough data within ICDF and EMS to support this study,” he noted.

The goal is not just theoretical. A key outcome of the project is engaging directly with policymakers to refine modelling and risk communication strategies for future pandemics. 

“This will help us to engage with the various departments of health to assist with improving modelling and risk communication work for better social behavioural change,” he explained.

According to Prof Brownhilder Neneh, Vice-Dean for Research and Internationalisation in the EMS faculty, the project reflects the faculty’s growing global presence. 

“Dr Combrink’s participation is a testament to the calibre of scholarship within the faculty,” she said. “It positions EMS as a key contributor to shaping policy and practice with societal impact.”

She added that the collaboration aligns well with the faculty’s vision for global partnerships that are rooted in local relevance.

“By focusing on contextualised evidence for policymaking, this project reflects our commitment to relevance, engagement and global partnership,” she said.

 

What comes next

Over the project’s 12-month timeline, the team will deliver:

• a case study analysis of modelling and social listening during South Africa’s COVID-19 response;
• an extended evidence mapping framework tailored to diverse evidence types;
• policy briefs and practical tools for public health practitioners; and
• a hybrid international workshop in late 2025 bringing together researchers, policymakers and health professionals to test and refine these outputs.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept