Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 June 2025 | Story Tshepo Tsotetsi | Photo Supplied
Dr Herkulaas Combrink
Dr Herkulaas Combrink is representing UFS in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Herkulaas Combrink, a senior lecturer in the Faculty of Economic and Management Sciences (EMS) at the University of the Free State (UFS), is representing the university in a new international research project that aims to improve how evidence is used in public health policymaking.

Dr Combrink, who is also a co-director of the Interdisciplinary Centre for Digital Futures (ICDF), has been selected as one of the principal investigators in a newly funded project supported by the UK’s International Science Partnerships Fund under the Evidence-Informed Policymaking Programme. Running from April 2025 to March 2026, the project – titled Integrating Evidence for Contextualised Public Health Policy: Lessons from South Africa – explores how different types of evidence can be used more effectively in shaping public health policy. The international collaboration includes researchers from the Centre for Philosophy of Epidemiology, Medicine and Public Health, which is a collaboration between Durham University and the University of Johannesburg; as well as Durham’s Centre for Humanities Engaging Science and Society.

 

From the Free State to global impact

For Dr Combrink, being part of this collaboration highlights the important work being done in the faculty and ICDF that is reaching beyond borders. 

“It’s important to showcase the impact we are making from the Free State that leads to global outcomes,” he said.

The project aims to evaluate an evidence mapping framework to determine how model-based projections and social listening reports can be more effectively integrated and contextualised for policymaking.

“These are two very different data types,” he explained. “The value lies in demonstrating how to apply the framework to different contexts for evidence-based mapping.”

Dr Combrink brings extensive expertise to the team, having worked on both disease modelling and risk communication during South Africa’s COVID-19 response. He was involved in national and provincial social listening initiatives, and used high-frequency social media data to track the spread of misinformation, often referred to as the ‘infodemic.’ 

“We’ve built up enough data within ICDF and EMS to support this study,” he noted.

The goal is not just theoretical. A key outcome of the project is engaging directly with policymakers to refine modelling and risk communication strategies for future pandemics. 

“This will help us to engage with the various departments of health to assist with improving modelling and risk communication work for better social behavioural change,” he explained.

According to Prof Brownhilder Neneh, Vice-Dean for Research and Internationalisation in the EMS faculty, the project reflects the faculty’s growing global presence. 

“Dr Combrink’s participation is a testament to the calibre of scholarship within the faculty,” she said. “It positions EMS as a key contributor to shaping policy and practice with societal impact.”

She added that the collaboration aligns well with the faculty’s vision for global partnerships that are rooted in local relevance.

“By focusing on contextualised evidence for policymaking, this project reflects our commitment to relevance, engagement and global partnership,” she said.

 

What comes next

Over the project’s 12-month timeline, the team will deliver:

• a case study analysis of modelling and social listening during South Africa’s COVID-19 response;
• an extended evidence mapping framework tailored to diverse evidence types;
• policy briefs and practical tools for public health practitioners; and
• a hybrid international workshop in late 2025 bringing together researchers, policymakers and health professionals to test and refine these outputs.

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept