Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 June 2025 | Story Martinette Brits | Photo Supplied
South Campus
The University of the Free State’s South Campus is set to become the hub of a pioneering veterinary science programme — only the second of its kind in South Africa.

The University of the Free State (UFS) is advancing plans to establish a new veterinary science programme – set to become only the second of its kind in South Africa. This initiative includes the development of a professionally accredited Bachelor of Veterinary Science (BVSc) degree and a state-of-the-art veterinary teaching hospital on the South Campus in Bloemfontein. It will also leverage the university’s Paradys Experimental Farm, home to advanced agricultural infrastructure and established production animal herds.

“The UFS is planning a new veterinary programme, strategically supported by the unique infrastructure and resources of its South Campus,” says Prof Johan van Niekerk, Vice-Dean of Agriculture in the Faculty of Natural and Agricultural Sciences. “Located in close proximity to the Paradys Experimental Farm, the campus provides an ideal environment for practical veterinary training. The farm’s real-world livestock systems will offer students invaluable experiential learning opportunities in animal care, disease management, and sustainable agriculture.”

In her installation address delivered on Monday 9 June 2025, Prof Hester C. Klopper, Vice-Chancellor and Principal of the UFS, highlighted the importance of this development, noting that it will position the university as a key contributor to veterinary science education in South Africa. "The establishment of a veterinary science programme at the UFS reflects our commitment to transdisciplinary research and addressing national priorities through innovation in higher education. This initiative not only strengthens our role in advancing food security, animal health, and sustainable agriculture, but also positions the UFS as a pivotal contributor to the continent’s development goals in these critical sectors."

This move comes in direct response to the country’s pressing need for more veterinary professionals, a shortage that poses risks to food security, animal welfare, public health, and agricultural productivity.

According to a report by the Western Cape Government (South Africa is Bleeding Veterinarians, February 2023), South Africa has only 60 to 70 veterinarians per million people – far below the international norm of 200 to 400 per million. This critical gap underscores the urgency of expanding veterinary education and training opportunities.

“This initiative directly addresses a national priority while aligning with continental and global aspirations towards sustainable development – especially in the areas of modern agriculture, food security, and environmental sustainability,” says Dr Nalize Scheepers from the Department of Sustainable Food Systems and Development.

 

Building a foundation for veterinary excellence

Although still in the early stages, the project has received in-principle approval from the Minister of Higher Education and Training, the Department of Agriculture (DoA), the Department of Higher Education and Training (DHET), and the South African Veterinary Council (SAVC).

The university has been exploring the feasibility of this programme for the past five years, involving consultations with various stakeholders in the higher education and veterinary sectors. "As a public higher education institution, we are subject to national regulation and will confirm commencement dates once final approval and accreditation of the qualification are secured," says Dr Scheepers.

As part of this initiative, a veterinary academic hospital is planned on the South Campus. “The facility will feature clinical training facilities – providing students with supervised, hands-on experience in animal diagnosis, surgery, and treatment; public veterinary services – offering essential care to local farmers, livestock owners, and pet owners in the surrounding communities; and research support – enabling applied research in critical areas such as animal health, epidemiology, and public health,” says Prof van Niekerk.

Beyond supporting academic excellence, the planned hospital will play a vital role in serving the wider agricultural community. “The hospital will address the urgent shortage of veterinary services in the region and contribute to the province’s animal health and food security goals,” he adds.

Initially, the BVSc degree will be offered within the Faculty of Natural and Agricultural Sciences, with plans to establish a dedicated School of Veterinary Science as the programme develops. The initiative also supports the UFS One Health Initiative, creating broad opportunities for research and development.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept