Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 June 2025 | Story Martinette Brits | Photo Supplied
South Campus
The University of the Free State’s South Campus is set to become the hub of a pioneering veterinary science programme — only the second of its kind in South Africa.

The University of the Free State (UFS) is advancing plans to establish a new veterinary science programme – set to become only the second of its kind in South Africa. This initiative includes the development of a professionally accredited Bachelor of Veterinary Science (BVSc) degree and a state-of-the-art veterinary teaching hospital on the South Campus in Bloemfontein. It will also leverage the university’s Paradys Experimental Farm, home to advanced agricultural infrastructure and established production animal herds.

“The UFS is planning a new veterinary programme, strategically supported by the unique infrastructure and resources of its South Campus,” says Prof Johan van Niekerk, Vice-Dean of Agriculture in the Faculty of Natural and Agricultural Sciences. “Located in close proximity to the Paradys Experimental Farm, the campus provides an ideal environment for practical veterinary training. The farm’s real-world livestock systems will offer students invaluable experiential learning opportunities in animal care, disease management, and sustainable agriculture.”

In her installation address delivered on Monday 9 June 2025, Prof Hester C. Klopper, Vice-Chancellor and Principal of the UFS, highlighted the importance of this development, noting that it will position the university as a key contributor to veterinary science education in South Africa. "The establishment of a veterinary science programme at the UFS reflects our commitment to transdisciplinary research and addressing national priorities through innovation in higher education. This initiative not only strengthens our role in advancing food security, animal health, and sustainable agriculture, but also positions the UFS as a pivotal contributor to the continent’s development goals in these critical sectors."

This move comes in direct response to the country’s pressing need for more veterinary professionals, a shortage that poses risks to food security, animal welfare, public health, and agricultural productivity.

According to a report by the Western Cape Government (South Africa is Bleeding Veterinarians, February 2023), South Africa has only 60 to 70 veterinarians per million people – far below the international norm of 200 to 400 per million. This critical gap underscores the urgency of expanding veterinary education and training opportunities.

“This initiative directly addresses a national priority while aligning with continental and global aspirations towards sustainable development – especially in the areas of modern agriculture, food security, and environmental sustainability,” says Dr Nalize Scheepers from the Department of Sustainable Food Systems and Development.

 

Building a foundation for veterinary excellence

Although still in the early stages, the project has received in-principle approval from the Minister of Higher Education and Training, the Department of Agriculture (DoA), the Department of Higher Education and Training (DHET), and the South African Veterinary Council (SAVC).

The university has been exploring the feasibility of this programme for the past five years, involving consultations with various stakeholders in the higher education and veterinary sectors. "As a public higher education institution, we are subject to national regulation and will confirm commencement dates once final approval and accreditation of the qualification are secured," says Dr Scheepers.

As part of this initiative, a veterinary academic hospital is planned on the South Campus. “The facility will feature clinical training facilities – providing students with supervised, hands-on experience in animal diagnosis, surgery, and treatment; public veterinary services – offering essential care to local farmers, livestock owners, and pet owners in the surrounding communities; and research support – enabling applied research in critical areas such as animal health, epidemiology, and public health,” says Prof van Niekerk.

Beyond supporting academic excellence, the planned hospital will play a vital role in serving the wider agricultural community. “The hospital will address the urgent shortage of veterinary services in the region and contribute to the province’s animal health and food security goals,” he adds.

Initially, the BVSc degree will be offered within the Faculty of Natural and Agricultural Sciences, with plans to establish a dedicated School of Veterinary Science as the programme develops. The initiative also supports the UFS One Health Initiative, creating broad opportunities for research and development.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept