Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 March 2025 | Story Precious Shamase | Photo Kwanele Madonsela
Deputy Director   - Academy for Multilingualism with the school teachers showing off the donated Dictionaries
Dr Tholani Hlongwa (middle), Deputy Director of the UFS Academy for Multilingualism, emphasised that such initiatives promote a deeper appreciation of diverse perspectives while helping to overcome communication barriers among learners.

International Mother Language Day marks its silver jubilee, highlighting 25 years of linguistic diversity advocacy. On Friday 21 February 2025, the world observed the 25th anniversary of International Mother Language Day, a milestone celebrating a quarter of a century of efforts to promote multilingualism and cultural preservation.

International Mother Language Day, observed annually, promotes awareness of linguistic and cultural diversity and multilingualism. The UFS Qwaqwa Campus' 2025 event not only celebrated this diversity, but it also provided tangible support to the local education system.

The event placed a spotlight on the importance of mother tongue-based education (MTBE), particularly as the South African government and the Department of Education continue to roll out MTBE in the fourth year of schooling (Grade 4).

The day’s primary objective was to cultivate a welcoming environment where learners could share their languages and cultural identities, a vision that directly aligns with the UFS’ Vision 130. This strategic framework champions inclusivity, which aims to create platforms where diverse communities can interact and learn from one another, solidifying a sense of belonging for all.

A key feature of the commemoration was the distribution of 40 bilingual pictorial dictionaries to two local primary schools in Qwaqwa. Notably, one school caters for hearing learners, while the other provides education for Deaf learners, ensuring inclusivity in the initiative.

"This event was more than just a celebration; it was a powerful demonstration of inclusivity in action," stated Dr Tholani Hlongwa, Deputy Director from the UFS Academy for Multilingualism. "By bringing together Deaf and hearing learners, we are breaking down communication barriers and fostering a deeper understanding of each other's unique perspectives."

"This year's commemoration held particular significance, as we witnessed the continued progression of mother tongue-based education within our national curriculum," said Dr Hlongwa. "These bilingual dictionaries will serve as invaluable tools for both teachers and learners, fostering a deeper understanding and appreciation of their mother languages."

The distribution of these resources aimed to support teaching and learning directly within the beneficiary schools, reinforcing the university's commitment to community engagement and educational development.

The Academy for Multilingualism at the UFS plays a crucial role in promoting and researching multilingualism, and this event highlighted its dedication to advancing language equity. The University of the Free State continues to demonstrate its dedication to the development of the communities surrounding its campuses.

The event at Thiboloha School for the Deaf and Blind stands as a testament to the UFS’ commitment to building a more inclusive and equitable society. By fostering dialogue and understanding, the university is actively contributing to a future where all individuals feel valued and respected. This initiative has not only enriched the lives of the participating learners, but it also set a precedent for future collaborations that champion multilingualism and inclusivity within the broader community.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept