Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 March 2025 | Story Tshepo Tsotetsi | Photo Supplied
Prof Tameshnie Deane
Prof Tameshnie Deane, Vice-Dean of Research, Postgraduate Studies and Internationalisation in the UFS Faculty of Law.

A judgment by Prof Tameshnie Deane, Vice-Dean of Research, Postgraduate Studies and Internationalisation at the University of the Free State’s (UFS) Faculty of Law, has been published in South African Criminal Law Reports (SACLR), in recognition of its groundbreaking contribution to South African domestic violence law.

Prof Deane’s May 2024 judgment in the case GD v NB (2025(1) SACR 179) challenged a restrictive Supreme Court of Appeal (SCA) precedent and expanded the interpretation of ‘domestic relationships’ under the Domestic Violence Act. Her ruling has not only reshaped legal understanding but also reinforced the UFS’s commitment to impactful legal scholarship.

South African Criminal Law Reports is a monthly report of criminal law and procedure cases from superior courts in Southern Africa. The cases highlighted in each issue are chosen for their importance to criminal law practitioners.

Challenging established precedents

Prof Deane’s judgment effectively challenged a precedent set by the SCA in Daffy v Daffy (2012), marking a significant shift in legal interpretation under the Domestic Violence Act 116 of 1998 (DVA).

The GD v NB case revolves around domestic violence and the issuance of a protection order under the DVA. The appellant (the person who appealed the original court’s decision), who was married to the sister of the respondent (the person who must answer the claims), argued that their relationship did not fall under the domestic relationship criteria for a protection order. This argument relied heavily on the SCA’s decision in Daffy v Daffy, where the court had narrowly defined a ‘domestic relationship’ as being limited to cohabitation or close familial ties. In the Daffy case, two brothers were denied protection under the DVA, as their strained business relationship was deemed insufficient to fall under the scope of domestic violence protections.

Expanding the definition of domestic relationships

Prof Deane, however, disagreed with the restrictive interpretation applied in that case. “I concluded that this constrictive interpretation of a ‘domestic relationship’ seemingly ignores the intended aims of the DVA,” she explained. In her judgment, she argued that the DVA was intended to offer protection in a wide range of domestic relationships, and that the previous ruling failed to consider the evolving dynamics of modern familial ties.

By drawing on the broader, evolving understanding of domestic violence, Prof Deane expanded the definition of a “domestic relationship” to include relationships based on familial obligations, even where they may not involve cohabitation or direct consanguinity (direct blood relation). She cited specific details in the GD v NB case where the appellant and respondent were involved in the care of the respondent’s mother. “The relationship between the appellant and respondent extends beyond business matters to include familial obligations,” she noted. The ruling in GD v NB granted the appellant a protection order, acknowledging that their relationship met the broader definition of domestic violence protection under the DVA.

Adapting the law to contemporary realities

Her judgment reinforced that domestic violence can occur in diverse familial structures and that protection under the DVA should not be limited by narrow definitions. “Society is constantly changing, and the law must adapt accordingly to ensure relevance and that the widest possible protections are afforded to those in a wide range of domestic relationships,” Prof Deane emphasised. Her judgment serves as a response to South Africa’s high rates of domestic violence, ensuring that the law accommodates and responds to the diverse situations in which domestic violence occurs.

This landmark ruling contributes significantly to the ongoing development of South African law, furthering the protection of domestic violence victims and ensuring that the DVA is applied in a way that reflects the realities of contemporary society. Prof Deane’s decision highlights the importance of the law adapting to social changes, offering broader protection and safeguarding the rights of vulnerable individuals within complex and varied domestic environments. This judgment also positions the UFS as a leader in advancing legal thought and contributing meaningfully to the evolution of South African law.

News Archive

Inaugural lecture: Prof Robert Bragg, Dept. of Microbial, Biochemical and Food Biotechnology
2006-05-17



Attending the inaugural lecture were in front from the left Prof Robert Bragg (lecturer at the Department of Microbial, Biochemical and Food Biotechnology) and Frederick Fourie (Rector and Vice-Chancellor).  At the back from the left were Prof James du Preez (Departmental Chairperson:  Department of Microbial, Biochemical and Food Biotechnology) and Prof Herman van Schalkwyk (Dean: Faculty of Natural and Agricultural Sciences). Photo: Stephen Collett
 

A summary of an inaugural lecture delivered by Prof Robert Bragg at the University of the Free State:

CONTROL OF INFECTIOUS AVIAN DISEASES – LESSONS FOR MAN?

Prof Robert R Bragg
Department of Microbial, Biochemical and Food Biotechnology
University of the Free State

“Many of the lessons learnt in disease control in poultry will have application on human medicine,” said Prof Robert Bragg, lecturer at the University of the Free State’s (UFS) Department of Microbial, Biochemical and Food Biotechnology during his inaugural lecture.

Prof Bragg said the development of vaccines remains the main stay of disease control in humans as well as in avian species.  Disease control can not rely on vaccination alone and other disease-control options must be examined.  

“With the increasing problems of antibiotic resistance, the use of disinfection and bio security are becoming more important,” he said.

“Avian influenza (AI) is an example of a disease which can spread from birds to humans.  Hopefully this virus will not develop human to human transmission,” said Prof Bragg.

According to Prof Bragg, South Africa is not on the migration route of water birds, which are the main transmitters of AI.  “This makes South Africa one of the countries less likely to get the disease,” he said.

If the AI virus does develop human to human transmission, it could make the 1918 flu pandemic pale into insignificance.  During the 1918 flu pandemic, the virus had a mortality rate of only 3%, yet more than 50 million people died.

Although the AI virus has not developed human-to-human transmission, all human cases have been related to direct contact with infected birds. The mortality rate in humans who have contracted this virus is 67%.

“Apart from the obvious fears for the human population, this virus is a very serious poultry pathogen and can cause 100% mortality in poultry populations.  Poultry meat and egg production is the staple protein source in most countries around the world. The virus is currently devastating the poultry industry world-wide,” said Prof Bragg.

Prof Bragg’s research activities on avian diseases started off with the investigation of diseases in poultry.  “The average life cycle of a broiler chicken is 42 days.  After this short time, they are slaughtered.  As a result of the short generation time in poultry, one can observe changes in microbial populations as a result of the use of vaccines, antibiotics and disinfectants,” said Prof Bragg.   

“Much of my research effort has been directed towards the control of infectious coryza in layers, which is caused by the bacterium Avibacterium paragallinarum.  This disease is a type of sinusitis in the layer chickens and can cause a drop in egg product of up to 40%,” said Prof Bragg.

The vaccines used around the world in an attempt to control this disease are all inactivated vaccines. One of the most important points is the selection of the correct strains of the bacterium to use in the vaccine.

Prof Bragg established that in South Africa, there are four different serovars of the bacterium and one of these, the serovar C-3 strain, was believed to be unique to Southern Africa. He also recently discovered this serovar for the first time in Israel, thus indicating that this serovar might have a wider distribution than originally believed.

Vaccines used in this country did not contain this serovar.  Prof Bragg established that the long term use of vaccines not containing the local South African strain resulted in a shift in the population distribution of the pathogen.

Prof Bragg’s research activities also include disease control in parrots and pigeons.   “One of the main research projects in my group is on the disease in parrots caused by the circovirus Beak and Feather Disease virus. This virus causes serious problems in the parrot breeding industry in this country. This virus is also threatening the highly endangered and endemic Cape Parrot,” said Prof Bragg.

Prof Bragg’s research group is currently working on the development of a DNA vaccine which will assist in the control of the disease, not only in the parrot breeding industry, but also to help the highly endangered Cape Parrot in its battle for survival.

“Not all of our research efforts are directed towards infectious coryza or the Beak and Feather Disease virus.  One of my Masters students is currently investigating the cell receptors involved in the binding of Newcastle Disease virus to cancerous cells and normal cells of humans. This work will also eventually lead to a possible treatment of cancer in humans and will assist with the development of a recombinant vaccine for Newcastle disease virus,” said Prof Bragg.

We are also currently investigating an “unknown” virus which causes disease problems in poultry in the Western Cape,” said Prof Bragg.
 
“Although disinfection has been extensively used in the poultry industry, it has only been done at the pre-placement stage. In other words, disinfectants are used before the birds are placed into the house. Once the birds are placed, all use of disinfectants stops,” said Prof Bragg.

“Disinfection and bio security can be seen as the ‘Cinderella’ of disease control in poultry.  This is also true for human medicine. One just has to look at the high numbers of people who die from hospital-acquired infections to realise that disinfection is not a concept which is really clear in human health care,” said Prof Bragg.

Much research has been done in the control of diseases through vaccination and through the use of antibiotics. “These pillars of disease control are, however, starting to crumble and more effort is needed on disinfection and bio security,” said Prof Bragg.

Prof Bragg has been working in close co-operation with a chemical manufacturing company in Stellenbosch to develop a unique disinfectant which his highly effective yet not toxic to the birds.

As a result of this unique product, he has developed the continual disinfection program for use in poultry. In this program the disinfectant is used throughout the production cycle of the birds. It is also used to ensure that there is excellent pre-placement disinfection.

“The program is extensively used for the control of infectious diseases in the parrot-breeding industry in South Africa and the product has been registered in 15 countries around the world with registration in the USA in the final process,” said Prof Bragg.

“Although the problem of plasmid mediated resistance to disinfectants is starting to rear its ugly head, this has allowed for the opening of a new research field which my group will hopefully exploit in the near future,” he said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept