Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 March 2025 | Story Andre Damons and Adele Louw | Photo Tania Allen
Agriculture Risk Financing research chair
Prof Johan van Niekerk, Vice-Dean for Agriculture for the Faculty of Natural and Agricultural Sciences; Prof Liezel Massyn, UFS Business School; Prof Nicolene Barkhuizen, Director of the UFS Business School; and Prof Cobus Oberholster, from the Agriculture Risk Financing research chair.

A newly established multi-stakeholder research chair at the University of the Free State (UFS) Business School will focus on holistic and interdisciplinary research that will create new knowledge, contribute to climate change adaptation and mitigation in the food and agricultural sector.

The Agriculture Risk Financing research chair, led by Prof Cobus Oberholster from the Business School, will also support sector specific policy development and implementation, and steer the societal discourse on climate financing and sustainable agriculture. The chair forms part of the UFS, Agricultural Research Council (ARC), and the Department of Agriculture, Land Reform and Rural Development (DALRRD) research chairs. Prof Oberholster joined the university on 1 February 2025 in this prestigious position which is a collaboration between the Business School and the UFS Department of Agricultural Economics.

Prof Oberholster, who spent a big portion of his corporate career in the banking environment, brings extensive expertise in climate finance, resource mobilisation, and sustainable economic practices. His appointment marks a significant milestone in advancing research at the intersection of finance, sustainability, and agriculture, ensuring that innovative financial solutions contribute to environmental resilience and responsible resource management. Prof Oberholster also gained extensive management experience over the past 15 years regarding the agribusiness environment (non-Bank) in South Africa with a specific focus on value-chain financing.

Focus of research chair

Says Prof Oberholster: “The research chair will strategically focus on the mainstreaming of climate-smart financing solutions within the food and agricultural sector. To achieve this, the research will focus on three strategic and interrelated pillars (Regulatory and policy, Entrepreneurial market exchanges and Digital financial innovations), which aim to provide a governance framework within which innovative financing and market mechanisms can be developed and commercialised.

“The chair will reside at the UFS Business School, but form part of a group of research chairs being hosted within the Faculty of Natural and Agricultural Science. These chairs cover the full food and agricultural value chain, which allow for leveraging the output of the chair within very specific components of the value agrifood value chain.”

The ARC-DALLRD-UFS research chairs were established last year in an effort to address the challenges and impact of climate change in Southern Africa and fall under the umbrella of climate change.

Prof Oberholster, who completed two doctoral degrees focusing on agriculture, agricultural development, and agricultural financing, says he is excited to be part of this joint initiative, and the opportunity to share his business and financing experience. “Climate change, and the corresponding need to find innovative financing solutions, is currently one of the biggest global challenges. It requires an accelerated and responsible approach to research and innovation which, together with the university’s trusted reputation, must be used to build social licence for disruptive technological solutions.”

Contributing to food security

According to Prof Oberholster, both the UFS Business School and the faculty, are ideally suited to find complementary commercial solutions for accessing and mobilising climate finance in South Africa and the wider African continent. The chair, through the UFS Business School, will also focus on capacity building which will be done through selected training and educational interventions, with the aim of addressing existing constraints in mobilising and accessing climate finance.

“The chair will focus on the integration of social, ethical and environmental parameters into climate-financing decisions. By focusing on these key sustainability aspects, access to climate finance will not only contribute to specific development objectives but also significantly contribute to food security,” Prof Oberholster says.

“Climate change, and the corresponding need to find innovative financing solutions, is currently one of the biggest global challenges. As such I’m looking forward to guide the creation of new knowledge in this specialised field, and especially to find complementary commercial solutions for accessing and mobilising climate finance in South Africa and the bigger African continent. What is standing out for me is the level of expertise available within the UFS, and the willingness of academics to work together on grand challenges such as climate finance. This is a winning recipe.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept